Skip to main content

Normality from Monte Carlo Simulation for Statistical Validation of Computer Intensive Algorithms

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10062))

Included in the following conference series:

Abstract

The latest AI techniques are usually computer intensive, as opposed to the traditional ones which rely on the consistency of the logic principles on which they are based. In contrast, many algorithms of Computational Intelligence (CI) are meta-heuristic, i.e. methods where the particular selection of parameters defines the details and characteristics of the heuristic proper. In this paper we discuss a method which allows us to ascertain, with high statistical significance, the relative performance of several meta-heuristics. To achieve our goal we must find a statistical goodness-of-fit (gof) test which allows us to determine the moment when the sample becomes normal. Most statistical gof tests are designed to reject the null hypothesis (i.e. the samples do NOT fit the same distribution). In this case we wish to determine the case where the sample IS normal. Using a Monte Carlo simulation we are able to find a practical gof test to this effect. We discuss the methodology and describe its application to the analysis of three case studies: training of neural networks, genetic algorithms and unsupervised clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dahiya, R.C., Gurland, J.: Pearson chi-squared test of fit with random intervals. Biometrika 59(1), 147–153 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  3. Darling, D.A.: The Kolmogorov-Smirnov, Cramer-von Mises tests. Ann. Math. Stat. 28(4), 823–838 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  4. Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

    Google Scholar 

  5. Royston, P.: Approximating the Shapiro-Wilk W-Test for non-normality. Stat. Comput. 2(3), 117–119 (1992)

    Article  Google Scholar 

  6. Akaike, H.: AKaike’s information criterion. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, p. 25. Springer, Heidelberg (2011). doi:10.1007/978-3-642-04898-2_110

    Chapter  Google Scholar 

  7. Binder, K.: Introduction: theory and “Technical” aspects of Monte Carlo simulations. In: Binder, K. (ed.) Monte Carlo Methods in Statistical Physics. Topics in Current Physics, pp. 1–45. Springer, Heidelberg (1986). doi:10.1007/978-3-642-82803-4_1

    Chapter  Google Scholar 

  8. Kuri-Morales, A.: Non-standard norms in genetically trained neural networks. In: 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. IEEE (2000)

    Google Scholar 

  9. Barnard, E.: Optimization for training neural nets. IEEE Trans. Neural Netw. 3(2), 232–240 (1992)

    Article  Google Scholar 

  10. Kuri-Morales, A.F., Aldana-Bobadilla, E., López-Peña, I.: The best genetic algorithm II. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS, vol. 8266, pp. 16–29. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45111-9_2

    Chapter  Google Scholar 

  11. Aldana-Bobadilla, E., Kuri-Morales, A.: A clustering method based on the maximum entropy principle. Entropy 17(1), 151–180 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Fernando Kuri-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kuri-Morales, A.F., López-Peña, I. (2017). Normality from Monte Carlo Simulation for Statistical Validation of Computer Intensive Algorithms. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds) Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science(), vol 10062. Springer, Cham. https://doi.org/10.1007/978-3-319-62428-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62428-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62427-3

  • Online ISBN: 978-3-319-62428-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics