Abstract
The classical Jensen inequality for concave function \(\varphi \) is adapted for the Sugeno integral using the notion of the subdifferential. Some examples in the framework of the Lebesgue measure to illustrate the results are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbaszadeh, S., Eshaghi, M., de la Sen, M.: The Sugeno fuzzy integral of log-convex functions. J. Inequal. Appl. 2015(1), 1–12 (2015)
Abbaszadeh, S., Eshaghi, M.: A Hadamard type inequality for fuzzy integrals based on \(r\)-convex functions. Soft. Comput. 20(8), 3117–3124 (2016)
Abbaszadeh, S., Eshaghi, M., Pap, E., Szakál, A.: Jensen-type inequalities for Sugeno integral. Inf. Sci. (submitted)
Agahi, H., Mesiar, R., Ouyang, Y.: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708–715 (2010)
Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: General Chebyshev type inequalities for universal integral. Inf. Sci. 187, 171–178 (2012)
Agahi, H., Román-Flores, H., Flores-Franulič, A.: General Barnes-Godunova-Levin type inequalities for Sugeno integral. Inf. Sci. 181, 1072–1079 (2011)
Caballero, J., Sadarangani, K.: A Cauchy-Schwarz type inequality for fuzzy integrals. Nonlinear Anal. 73, 3329–3335 (2010)
Caballero, J., Sadarangani, K.: Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst. 161, 1480–1487 (2010)
Chen, X., Jing, Z., Xiao, G.: Nonlinear fusion for face recognition using fuzzy integral. Commun. Nonlinear Sci. Numer. Simul. 12, 823–831 (2007)
Flores-Franulič, A., Román-Flores, H.: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178–1184 (2007)
Flores-Franulič, A., Román-Flores, H., Chalco-Cano, Y.: Markov type inequalities for fuzzy integrals. Appl. Math. Comput. 207, 242–247 (2009)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and Its Applications, vol. 127. Cambridge University Press, Cambridge (2009)
Kaluszka, M., Okolewski, A., Boczek, M.: On Chebyshev type inequalities for generalized Sugeno integrals. Fuzzy Sets Syst. 244, 51–62 (2014)
Klement, E.P., Li, J., Mesiar, R., Pap, E.: Integrals based on monotone set functions. Fuzzy Sets Syst. 281, 88–102 (2015)
Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18(1), 178–187 (2010)
Lee, W.-S.: Evaluating and ranking energy performance of office buildings using fuzzy measure and fuzzy integral. Energy Convers. Manag. 51, 197–203 (2010)
Merigó, J.M., Casanovas, M.: Decision-making with distance measures and induced aggregation operators. Comput. Ind. Eng. 60, 66–76 (2011)
Merigó, J.M., Casanovas, M.: Induced aggregation operators in the Euclidean distance and its application in financial decision making. Expert Syst. Appl. 38, 7603–7608 (2011)
Nemmour, H., Chibani, Y.: Fuzzy integral to speed up support vector machines training for pattern classification. Int. J. Knowl.-Based Intell. Eng. Syst. 14, 127–138 (2010)
Pap, E.: Null-Additive Set Functions. Mathematics and Its Applications, vol. 337. Kluwer Academic Publishers, Dordrecht (1995)
Pap, E., Štrboja, M.: Generalizations of integral inequalities for integrals based on nonadditive measures. In: Pap, E. (ed.) Intelligent Systems: Models and Applications. Topics in Intelligent Engineering and Informatics, vol. 3, pp. 3–22. Springer, Heidelberg (2013). doi:10.1007/978-3-642-33959-2_1
Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 180, 543–548 (2010)
Ralescu, D., Adams, G.: The fuzzy integral. J. Math. Anal. Appl. 75, 562–570 (1980)
Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Román-Flores, H., Chalco-Cano, Y.: \(H\)-continuity of fuzzy measures and set defuzzifincation. Fuzzy Sets Syst. 157, 230–242 (2006)
Román-Flores, H., Chalco-Cano, Y.: Sugeno integral and geometric inequalities. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 15, 1–11 (2007)
Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177, 3192–3201 (2007)
Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y.: The fuzzy integral for monotone functions. Appl. Math. Comput. 185, 492–498 (2007)
Royden, H.L.: Real Analysis. Macmillan, New York (1988)
Seyedzadeh, S.M., Norouzi, B., Mirzakuchaki, S.: RGB color image encryption based on Choquet fuzzy integral. J. Syst. Softw. 97, 128–139 (2014)
Soda, P., Iannello, G.: Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE Trans. Inf Technol. Biomed. 13, 322–329 (2009)
Soria-Frisch, A.: A new paradigm for fuzzy aggregation in multisensorial image processing. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 59–67. Springer, Heidelberg (2001). doi:10.1007/3-540-45493-4_10
Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Dissertation, Tokyo Institute of Technology (1974)
Wang, Z., Klir, G.: Fuzzy Measure Theory. Plenum, New York (1992)
Wu, L., Sun, J., Ye, X., Zhu, L.: Hölder type inequality for Sugeno integral. Fuzzy Sets Syst. 161, 2337–2347 (2010)
Zhang, X., Zheng, Y.: Linguistic quantifiers modeled by interval-valued intuitionistic Sugeno integrals. J. Intell. Fuzzy Syst. Preprint
Acknowledgement
This research for the second author was supported by the grant MNPRS174009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Szakál, A., Pap, E., Abbaszadeh, S., Gordji, M.E. (2017). Jensen Inequality with Subdifferential for Sugeno Integral. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds) Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science(), vol 10062. Springer, Cham. https://doi.org/10.1007/978-3-319-62428-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-62428-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62427-3
Online ISBN: 978-3-319-62428-0
eBook Packages: Computer ScienceComputer Science (R0)