Skip to main content

Exploring Complex Networks with Failure-Prone Agents

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10062))

Included in the following conference series:

Abstract

Distributed data-collection and synchronization is essential in sensor networks and the Internet of Things (IoT), as well as for data-replication in server farms, clusters and clouds. Generally, such systems consist of a set of interconnected components, which cooperate and coordinate to achieve a collective task, while acting locally and being failure-prone. An important challenge is hence to define efficient and robust algorithms for data collection and synchronisation in large-scale, distributed and failure-prone platforms. This paper studies the performance and robustness of different multi-agent algorithms in complex networks with different topologies (Lattice, Small-world, Community and Scale-free) and different agent failure rates. Agents proceed from random locations and explore the network to collect local data hosted in each node. Their exploration algorithm determines how fast they cover unexplored nodes to collect new data, and how often they meet other agents to exchange complementary data and speed-up the process. Two exploration algorithms are studied: one random and one using a stigmergy model (that we propose). Experimental results show how network topologies and agent failure-rates impact data-collection and synchronization, and how a stigmergy-based approach can improve performance and success rates across most scenarios. We believe these results offer key insights into the suitability of various decentralised algorithms in different networked environments, which are increasingly at the core of modern information and communication technology (ICT) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanenbaum, A., Steen, M.V.: Distributed Systems: Principles and Paradigms. Prentice-Hall, Upper Saddle River (2006)

    MATH  Google Scholar 

  2. Boccaletti, S.: The Synchronized Dynamics of Complex Systems. Elsevier, Florence (2008)

    Book  MATH  Google Scholar 

  3. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  4. Grabow, C., Hill, S.M., Grosskinsky, S., Timme, M.: Do small worlds synchronize fastest? EPL (Europhys. Lett.) 90, 48002 (2010)

    Article  Google Scholar 

  5. Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92, 118701 (2004)

    Article  Google Scholar 

  6. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. Ramcloud.Stanford.Edu (2013)

  7. Nedic, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55, 922–938 (2010)

    Article  MathSciNet  Google Scholar 

  8. Rodriguez, A., Gomez, J., Diaconescu, A.: Towards failure-resistant mobile distributed systems inspired by swarm intelligence and trophallaxis. In: Proceedings of the European Conference on Artificial Life 2015, pp. 448–455. The University of York UK (2015)

    Google Scholar 

  9. Vu, Q.A.N., Hassas, S., Armetta, F., Gaudou, B., Canal, R.: Combining trust and self-organization for robust maintaining of information coherence in disturbed MAS. In: Proceedings - 2011 5th IEEE International Conference on Self-adaptive and Self-organizing Systems, SASO 2011, pp. 178–187 (2011)

    Google Scholar 

  10. Rodriguez, A., Gomez, J., Diaconescu, A.: Foraging-inspired self-organisation for terrain exploration with failure-prone agents. In: 2015 IEEE 9th International Conference on Self-adaptive and Self-organizing Systems, vol. 2015, pp. 121–130. IEEE, October 2015

    Google Scholar 

  11. Van Der Hofstad, R.: Random graphs and complex networks, vol. I (2016). http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

  12. Gray, L.: A mathematician looks at Wolfram’s new kind of science. Not. AMS 50, 200–211 (2002)

    MATH  Google Scholar 

  13. Balaji, P.G., Srinivasan, D.: An introduction to multi-agent systems. Stud. Comput. Intell. 310, 1–27 (2010)

    Google Scholar 

  14. Russell, S., Norvig, P.: Inteligencia Artificial. Un enfoque moderno. 2da Edición. Prentice-Hall, Madrid (2004)

    Google Scholar 

  15. Mori, H., Uehara, M., Matsumoto, K.: Parallel architectures with small world network model. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, pp. 467–472 (2015)

    Google Scholar 

  16. White, S.: Analysis and visualization of network data using JUNG. J. Stat. Softw. VV, 1–35 (2005)

    Google Scholar 

  17. Barabási, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gündüz-Öğüdücü, Ş., Etaner-Uyar, A.Ş. (eds.): Social Networks: Analysis and Case Studies. LNSN. Springer, Vienna (2014). doi:10.1007/978-3-7091-1797-2

    Google Scholar 

  19. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)

    Article  Google Scholar 

  20. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math 2, 431–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Small, M.: Scale-Free Network - MathWorld-A Wolfram Web Resource (2016)

    Google Scholar 

  22. Takemoto, K., Oosawa, C.: Introduction to Complex Networks: Measures, Statistical Properties, and Models. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  23. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. U.S.A. 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mahmood, Z., Hill, R. (eds.): Cloud Computing for Enterprise Architectures. Computer Communications and Networks. Springer, London (2011). doi:10.1007/978-1-4471-2236-4

    Google Scholar 

  25. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  26. Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 18, 41–48 (2004)

    Article  Google Scholar 

  27. Dorigo, M., Stutzle, T.: Ant Colony Optimization, vol. 1. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arles Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rodríguez, A., Gómez, J., Diaconescu, A. (2017). Exploring Complex Networks with Failure-Prone Agents. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds) Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science(), vol 10062. Springer, Cham. https://doi.org/10.1007/978-3-319-62428-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62428-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62427-3

  • Online ISBN: 978-3-319-62428-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics