Skip to main content

Implementation of Computer Vision Guided Peg-Hole Insertion Task Performed by Robot Through LabVIEW

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10061))

Included in the following conference series:

  • 1482 Accesses

Abstract

This paper presents a computer vision guided peg hole insertion task conducted by a robot. We mounted two cameras: one capturing top view and the other capturing side view to calibrate the three dimensional co-ordinates of the center position of the peg and hole found in the image to the actual world co-ordinates so that the robot can grab and insert the peg into the hole automatically. We exploit normalized cross correlation based template matching and distortion model (grid) calibration algorithm for our experiment. We exploit a linear equation for the linear and rotational displacement of the arm and gripper of the robot respectively for computing the pulse required for the encoder. We utilize gantry robot to conduct the experiment. The implementation was carried out in LabVIEW environment. We achieved significant amount of accuracy with an experimental error of 5% for template matching and \({\pm } 2.5\) mm for calibration algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balletti, L., Rocchi, A., Belo, F., Catalano, M., Garabini, M., Grioli, G., Bicchi, A.: Towards variable impedance assembly: the VSA peg-in-hole. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 402–408. IEEE (2012)

    Google Scholar 

  2. Callegari, M., Gabrielli, A., Palpacelli, M.-C., Principi, M.: Design of advanced robotic systems for assembly automation. Int. J. Mech. Control 8(1), 3–8 (2007)

    Google Scholar 

  3. Callegari, M., Suardi, A.: On the force-controlled assembly operations of a new parallel kinematics manipulator. In: Proceedings of the Mediterranean Conference on Control and Automation, pp. 18–20 (2003)

    Google Scholar 

  4. Cervera Mateu, E.: Perception-based learning for fine motion planning in robot manipulation (1997)

    Google Scholar 

  5. Choi, J.W., Fang, T.H., Yoo, W.S., Lee, M.H.: Sensor data fusion using perception net for a precise assembly task. IEEE/ASME Trans. Mech. 8(4), 513–516 (2003)

    Article  Google Scholar 

  6. Dietrich, F., Buchholz, D., Wobbe, F., Sowinski, F., Raatz, A., Schumacher, W., Wahl, F.M.: On contact models for assembly tasks: Experimental investigation beyond the peg-in-hole problem on the example of force-torque maps. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2313–2318. IEEE (2010)

    Google Scholar 

  7. Ismail, K.A.: Application of computer vision techniques for automated road safety analysis and traffic data collection. Ph.D. thesis, University of British Columbia (2010). https://open.library.ubc.ca/cIRcle/collections/24/items/1.0062871

  8. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill Inc., New York (1995)

    Google Scholar 

  9. Kim, J., Cho, H.S.: Visual sensor-based measurement for deformable peg-in-hole tasks. In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999, vol. 1, pp. 567–572. IEEE (1999)

    Google Scholar 

  10. Kwon, K., Ready, S.: Practical Guide to Machine Vision Software: An Introduction with LabVIEW. Wiley (2015). https://books.google.com.mx/books?id=_jiCoAEACAAJ

  11. Kwon, K., Ready, S., Sons, J.W.: Practical Guide to Machine Vision Software: An Introduction with LabVIEW. Wiley-VCH (2014). https://books.google.ca/books?id=yXkKrgEACAAJ

  12. Li, W., Gee, T., Friedrich, H., Delmas, P.: A practical comparison between Zhang’s and Tsai’s calibration approaches. In: Proceedings of the 29th International Conference on Image and Vision Computing New Zealand, IVCNZ 2014, pp. 166–171 (2014) http://doi.acm.org/10.1145/2683405.2683443

  13. Lopez-Juarez, I., Corona-Castuera, J., Peña-Cabrera, M., Ordaz-Hernandez, K.: On the design of intelligent robotic agents for assembly. Inf. Sci. 171(4), 377–402 (2005)

    Article  Google Scholar 

  14. Lopez-Juarez, I., Howarth, M.: Learning manipulative skills with art. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 1, pp. 578–583. IEEE (2000)

    Google Scholar 

  15. Lopez-Juarez, I., Howarth, M., Sivayoganathan, K.: An adaptive learning approach to control contact force in assembly. In: Proceedings of the 1998 IEEE/RSJ International Conference Intelligent Robots and Systems, vol. 3, pp. 1443–1448. IEEE (1998)

    Google Scholar 

  16. Lopez-Juarez, I., Ordaz-Hernández, K., Peña-Cabrera, M., Corona-Castuera, J., Rios-Cabrera, R.: On the design of a multimodal cognitive architecture for perceptual learning in industrial robots. In: Gelbukh, A., Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS, vol. 3789, pp. 1062–1072. Springer, Heidelberg (2005). doi:10.1007/11579427_108

    Chapter  Google Scholar 

  17. López-Juárez, I., Rios-Cabrera, R., Peña-Cabrera, M., Méndez, G.M., Osorio, R.: Fast object recognition for grasping tasks using industrial robots. Computación y Sistemas 16(4), 421–432 (2012)

    Google Scholar 

  18. Navarro-Gonzalez, J., Lopez-Juarez, I., Rios-Cabrera, R., Ordaz-Hernández, K.: On-line knowledge acquisition and enhancement in robotic assembly tasks. Robot. Comput. Int. Manuf. 33, 78–89 (2015)

    Article  Google Scholar 

  19. Newman, W.S., Zhao, Y., Pao, Y.H.: Interpretation of force and moment signals for compliant peg-in-hole assembly. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, ICRA 2001, vol. 1, pp. 571–576. IEEE (2001)

    Google Scholar 

  20. Park, H., Bae, J.H., Park, J.H., Baeg, M.H., Park, J.: Intuitive peg-in-hole assembly strategy with a compliant manipulator. In: 2013 44th International Symposium on Robotics (ISR), pp. 1–5. IEEE (2013)

    Google Scholar 

  21. Perveen, N., Kumar, D., Bhardwaj, I.: An overview on template matching methodologies and its applications. IJRCCT 2(10), 988–995 (2013)

    Google Scholar 

  22. Ratcliffe, J.D., Lewin, P.L., Rogers, E., Htnen, J.J., Owens, D.H.: Norm-optimal iterative learning control applied to gantry robots for automation applications. IEEE Trans. Robot. 22(6), 1303–1307 (2006). http://dblp.uni-trier.de/db/journals/trob/trob22.html#RatcliffeLRHO06

    Article  Google Scholar 

  23. Reinhart, G., Radi, M.: Some issues of integrating telepresence technology into industrial robotic assembly. In: Proceedings of the International Conference on Control and Automation, Dubai. Citeseer (2009)

    Google Scholar 

  24. Samper, D., Santolaria, J., Brosed, F.J., Majarena, A.C., Aguilar, J.J.: Analysis of Tsai calibration method using two- and three-dimensional calibration objects. Mach. Vis. Appl. 24(1), 117–131 (2013)

    Article  Google Scholar 

  25. Sharma, K., Shirwalkar, V., Pal, P.K.: Intelligent and environment-independent peg-in-hole search strategies. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), pp. 1–6. IEEE (2013)

    Google Scholar 

  26. Tsuruoka, T., Fujioka, H., Moriyama, T., Mayeda, H.: 3D analysis of contact in peg-hole insertion. In: 1997 IEEE International Symposium on Assembly and Task Planning, ISATP 1997, pp. 84–89. IEEE (1997)

    Google Scholar 

  27. Xia, Y., Yin, Y., Chen, Z.: Dynamic analysis for peg-in-hole assembly with contact deformation. Int. J. Adv. Manuf. Technol. 30(1–2), 118–128 (2006)

    Article  Google Scholar 

  28. Xue, G., Fukuda, T., Arai, F., Asama, H., Kaetsu, H., Endo, I.: Dynamically reconfigurable robotic systemassembly of new type cells as a dual-peg-in-hole problem. In: Asama, H., Fukuda, T., Arai, T., Endo, I. (eds.) Distributed Autonomous Robotic Systems, pp. 383–394. Springer, Tokyo (1994). doi:10.1007/978-4-431-68275-2_34

    Chapter  Google Scholar 

  29. kook Yun, S.: Compliant manipulation for peg-in-hole: is passive compliance a key to learn contact motion? In: ICRA, pp. 1647–1652. IEEE (2008) http://dblp.uni-trier.de/db/conf/icra/icra2008.html#Yun08

  30. Zhou, J., Georganas, N.D., Petriu, E.M., Shen, X., Marlic, F.: Modelling contact forces for 3D interactive peg-in-hole virtual reality operations. In: Proceedings of the Instrumentation and Measurement Technology Conference, IMTC 2008, pp. 1397–1402. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Sauceda Cienfuegos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sauceda Cienfuegos, A., Rodriguez, E., Romero, J., Ortega Aranda, D., Saha, B.N. (2017). Implementation of Computer Vision Guided Peg-Hole Insertion Task Performed by Robot Through LabVIEW. In: Sidorov, G., Herrera-Alcántara, O. (eds) Advances in Computational Intelligence. MICAI 2016. Lecture Notes in Computer Science(), vol 10061. Springer, Cham. https://doi.org/10.1007/978-3-319-62434-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62434-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62433-4

  • Online ISBN: 978-3-319-62434-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics