Skip to main content

Object Tracking Based on Modified TLD Framework Using Compressive Sensing Features

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10061))

Included in the following conference series:

  • 1385 Accesses

Abstract

Visual object tracking is widely researched but still challenging as both accuracy and efficiency must be considered in a single system. CT tracker can achieve a good real-time performance but is not very robust to fast movements. TLD framework has the ability to re-initialize object but can’t handle rotation and runs with low efficiency. In this paper, we propose a tracking algorithm combining the CT into TLD framework to overcome the disadvantages of each other. With the scale information obtained by an optical-flow tracker, we select samples for detector and use the detection result to correct the optical-flow tracker. The features are extracted using compressive sensing to improve the processing speed. The classifier parameters are updated by online learning. Considering the situation of continuous loss of object, a sliding window searching is also employed. Experiment results show that our proposed method achieves good performances in both precision and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)

    Article  Google Scholar 

  2. Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998)

    Article  Google Scholar 

  3. Wang, D., Lu, H., Yang, M.H.: Least soft-threshold squares tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2371–2378 (2013)

    Google Scholar 

  4. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC, vol. 1, p. 6 (2006)

    Google Scholar 

  5. Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  6. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  7. Wang, N., Shi, J., Yeung, D.Y., Jia, J.: Understanding and diagnosing visual tracking systems. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3101–3109 (2015)

    Google Scholar 

  8. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

  9. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31(4), 471–484 (2015)

    Article  Google Scholar 

  10. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  11. Li, Q., Ge, X., Wang, G.: An improved TLD tracking method using compressive sensing. In: 18th International Conference on Advanced Information Technologies and Applications, San Diego, pp. 259–262 (2016)

    Google Scholar 

  12. Baraniuk, R.G.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  13. Achlioptas, D.: Database-friendly random projections. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 274–281. ACM (2001)

    Google Scholar 

  14. Kalal., Z., Matas, J., Mikolajczyk, K.: PN learning: bootstrapping binary classifiers by structural constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2010)

    Google Scholar 

  15. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  16. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Yang , Cindy Cappelle or Yassine Ruichek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, T., Cappelle, C., Ruichek, Y., El Bagdouri, M. (2017). Object Tracking Based on Modified TLD Framework Using Compressive Sensing Features. In: Sidorov, G., Herrera-Alcántara, O. (eds) Advances in Computational Intelligence. MICAI 2016. Lecture Notes in Computer Science(), vol 10061. Springer, Cham. https://doi.org/10.1007/978-3-319-62434-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62434-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62433-4

  • Online ISBN: 978-3-319-62434-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics