Skip to main content

Design and Simulation of a New Lower Exoskeleton for Rehabilitation of Patients with Paraplegia

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2016)

Abstract

The paper proposes a new architecture for a lower exoskeleton with five degrees of freedom (DOF) per each leg, where, the design and synthesis of the kinematic chains is based on human leg parameters in terms of ratios, range of motion, and physical length. This research presents the design and simulation of lower limb exoskeleton for rehabilitation of patients with paraplegia. This work presents close equation for the forward and inverse kinematics by geometric and Denavit-Hartenberg (D-H) approach. Also, the dynamic model is approached by applying the principle of Lagrangian dynamics. The paper contains several simulations and numerical examples to prove the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Instituto Nacional de estadística y geografia: Las personas con discapacidad en México una visión al 2010, Mexico (2013)

    Google Scholar 

  2. Pedro, V.L.: Biomecánica de la marcha normal y patológica, Instituto de Biomecánica de Valencia

    Google Scholar 

  3. Cortes, F.R.: Robotica. Alfaomega Grupo Editor (2011)

    Google Scholar 

  4. Kelly, R., Santibáñez, V., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)

    Google Scholar 

  5. Perry, J.: Gait Analysis: Normal and Pathological Function. Slack Incorporated, New York (1992)

    Google Scholar 

  6. Kawamoto, H., Sankai, Y.: Power assist system HAL-3 for gait disorder person. Institute of Engineering Mechanics and Systems, University of Tsukuba (2010)

    Google Scholar 

  7. Agrawal, S.K., Banala, S.K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J.P., Hsu, W.-L.: Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans. Neural Syst. Rehab. Eng. 15(3), 410–420 (2007)

    Article  Google Scholar 

  8. Ekkelenkamp, R., Veltink, P., Stramigioli, S., van der Kooij, H.: Evaluation of a virtual model control for the selective support of gait functions using an exoskeleton. In: IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 693–699, June 2007

    Google Scholar 

  9. Gomez-Ferrer Sapiña, R.: Estudio biomecánico de la marcha humana, Tesis Doctoral, Universidad de Valencia, Departamento de medicina, Valencia España (2004)

    Google Scholar 

  10. Chávez Cardona, M.A.: Exoesqueletos para potenciar las capacidades humanas y apoyar la reabilitación. Revista Ingeniería Biomédica 7(4), 63–73 (2010). Universidad del Valle

    Google Scholar 

  11. Kessler Foundation and Ekso Bionics: kurzweilai. http://www.kurzweilai.net/ekso-exoskeleton-allowing-traumatic-spinal-cord-injury-patients-to-walk. Accessed Nov 2015

  12. Argo Medical Technologies Inc. (2012). http://rewalk.com/

  13. Ekkelenkamp, R., Veltink, P., Stramigioli, S., van der Kooij, H.: Evaluation of a virtual model control for the selective support of gait functions using an exoskeleton. In: IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 693–699, June 2007

    Google Scholar 

  14. Kazerooni, H.: (2010). bleex.me.berkeley.edu/research/exoskeleton/elegs/

  15. Pinto Palmero, R.: Diseño cinemático para mejorar la ergonomía en humano-maquina, Avance de Tesis de Maestría, UNAM, Facultad de Ingeniería (2014)

    Google Scholar 

  16. Jaime, A.L.: Control automático de un exoesqueleto de marcha para pacientes con discapacidad motora. Tesis de Maestría, Universidad Nacional de Colombia, Colombia Bogota (2013)

    Google Scholar 

  17. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: ICRA, pp. 1620–1626. IEEE (2003)

    Google Scholar 

  18. Choi, Y., Kim, D., You, B.-J.: On the walking control for humanoid robot based on the kinematic resolution of com jacobian with embedded motion. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2655–2660, May 2006

    Google Scholar 

  19. Onen, U., Botsali, F., Kalyoncu, M., Tinkir, M., Yihnaz, N., Sahin, Y.: Design and actuator selection of a lower extremity exoskeleton. IEEEIASME Trans. Mechatron. 19(2), 623–632 (2013)

    Article  Google Scholar 

  20. Hernández-Santos, C., Rodriguez-Leal, E., Soto, R., Gordillo, J.L.: Kinematics and dynamics of a new 16 DOF humanoid biped robot with active toe joint. Int. J. Adv. Robot. Syst. 9, 190 (2012). ISSN 1729-8806

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), located at Insurgentes 1582, Zip Code 03940, CDMX, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hernández-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aragón, F.C., Hernández-Santos, C., Hernández Vega, JI., Córdova, D.A., Palomares Gorham, D.G., Sánchez Cuevas, J.L. (2017). Design and Simulation of a New Lower Exoskeleton for Rehabilitation of Patients with Paraplegia. In: Sidorov, G., Herrera-Alcántara, O. (eds) Advances in Computational Intelligence. MICAI 2016. Lecture Notes in Computer Science(), vol 10061. Springer, Cham. https://doi.org/10.1007/978-3-319-62434-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62434-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62433-4

  • Online ISBN: 978-3-319-62434-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics