Skip to main content

Dimensionality Reduction for the Analysis of Time Series Data from Wind Turbines

  • Chapter
  • First Online:
Scientific Computing and Algorithms in Industrial Simulations

Abstract

We are addressing two related applications for the analysis of data from wind turbines. First, we consider time series data arising from virtual sensors in numerical simulations as employed during product development, and, second, we investigate sensor data from condition monitoring systems of installed wind turbines. For each application we propose a data analysis procedure based on dimensionality reduction. In the case of virtual product development we develop tools to assist the engineer in the process of analyzing the time series data from large bundles of numerical simulations in regard to similarities or anomalies. For condition monitoring we develop a procedure which detects damages early in the sensor data stream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    European Wind Energy Association www.ewea.org/wind-energy-basics/faq.

References

  1. I. Antoniadou, Accounting for Nonstationarity in the Condition Monitoring of Wind Turbine Gearboxes, PhD thesis, University of Sheffield, 2013

    Google Scholar 

  2. R. Coifman, F. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. European Wind Energy Association (EWEA), Wind in power - 2015 European statistics, tech. report, European Wind Energy Association, February 2016

    Google Scholar 

  4. R. Gasch, J. Twele (eds.), Wind Power Plants (Springer, Berlin, 2012)

    Google Scholar 

  5. B. Hahn, M. Durstewitz, K. Rohrig, Reliability of wind turbines, in Wind Energy, ed. by J. Peinke, P. Schaumann, S. Barth (Springer, Berlin, 2007), pp. 329–332

    Chapter  Google Scholar 

  6. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd edn. (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  7. N.E. Huang, Z. Shen, S. Long, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Itakura, Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23, 67–72 (1975)

    Article  Google Scholar 

  9. J.M. Jonkman, The new modularization framework for the FAST wind turbine CAE tool, in Proceedings of the 51st AIAA Aerospace Sciences Meeting, 2013. also Tech. RepNREL/CP-5000-57228, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  10. A. Kusiak, Z. Zhang, A. Verma, Prediction, operations, and condition monitoring in wind energy. Energy 60, 1–12 (2013)

    Article  Google Scholar 

  11. J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  12. W. Lu, F. Chu, Condition monitoring and fault diagnostics of wind turbines, in Prognostics and Health Management Conference, 2010. PHM ’10., Jan. 2010, pp. 1–11

    Google Scholar 

  13. L. Mujica, J. Rodellar, A. Fernández, A. Güemes, Q-statistic and T 2-statistic PCA-based measures for damage assessment in structures. Struct. Health Monit. 10, 539–553 (2011)

    Article  Google Scholar 

  14. R.B. Randall, Vibration-based Condition Monitoring: Industrial, Automotive and Aerospace Applications (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  15. S. Salvador, P. Chan, FastDTW: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11, 561–580 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Federal Ministry of Education and Research (BMBF) for the opportunity to do research in the VAVID project under grant 01IS14005. We cordially thank Henning Lang and Tobias Tesch for their assistance with the numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Garcke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Garcke, J., Iza-Teran, R., Marks, M., Pathare, M., Schollbach, D., Stettner, M. (2017). Dimensionality Reduction for the Analysis of Time Series Data from Wind Turbines. In: Griebel, M., Schüller, A., Schweitzer, M. (eds) Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham. https://doi.org/10.1007/978-3-319-62458-7_16

Download citation

Publish with us

Policies and ethics