Skip to main content

LC-GAP: Localized Coulomb Descriptors for the Gaussian Approximation Potential

  • Chapter
  • First Online:
Scientific Computing and Algorithms in Industrial Simulations

Abstract

We introduce a novel class of localized atomic environment representations based upon the Coulomb matrix. By combining these functions with the Gaussian approximation potential approach, we present LC-GAP, a new system for generating atomic potentials through machine learning (ML). Tests on the QM7, QM7b and GDB9 biomolecular datasets demonstrate that potentials created with LC-GAP can successfully predict atomization energies for molecules larger than those used for training to chemical accuracy, and can (in the case of QM7b) also be used to predict a range of other atomic properties with accuracy in line with the recent literature. As the best-performing representation has only linear dimensionality in the number of atoms in a local atomic environment, this represents an improvement in both prediction accuracy and computational cost when compared to similar Coulomb matrix-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All non-hydrogen atoms are considered heavy.

  2. 2.

    The atomization energy is the potential energy of a molecule that has been adjusted by the combined potential energy of its isolated atoms [5].

  3. 3.

    Here, we tested values (α, r cut) ∈ {3, 4, , 7} ×{ 3. 0, 3. 5, 4. 0, 4. 5, , 7. 0}.

References

  1. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87, 184115 (2013)

    Article  Google Scholar 

  2. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 04, 136403 (2010)

    Article  Google Scholar 

  3. L.C. Blum, J.-L. Reymond, 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732–8733 (2009)

    Article  Google Scholar 

  4. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754–13769 (2016)

    Article  Google Scholar 

  5. S. Fliszár, Atoms, Chemical Bonds, and Bond Dissociation Energies. Lecture Notes in Chemistry (Springer, Berlin, 1994)

    Google Scholar 

  6. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Texts in Computational Science and Engineering, vol. 5 (Springer Science & Business Media, Heidelberg, 2007)

    Google Scholar 

  7. K. Hansen, G. Montavon, F. Biegler et al., Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404–3419 (2013)

    Article  Google Scholar 

  8. K. Hansen, F. Biegler, R. Ramakrishnan et al., Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326–2331 (2015)

    Article  Google Scholar 

  9. W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168–3171 (1996)

    Article  Google Scholar 

  10. G. Montavon, K. Hansen, S. Fazli et al., Learning invariant representations of molecules for atomization energy prediction, in Advances in Neural Information Processing Systems (Springer, Berlin, 2012), pp. 440–448

    Google Scholar 

  11. G. Montavon, M. Rupp, V. Gobre et al., Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013)

    Article  Google Scholar 

  12. S.J. Plimpton, A.P. Thompson, Computational aspects of many-body potentials. MRS Bull. 37, 513–521 (2012)

    Article  Google Scholar 

  13. E. Prodan, W. Kohn, Nearsightedness of electronic matter. Proc. Natl. Acad. Sci. U. S. A. 102, 11635–11638 (2005)

    Article  Google Scholar 

  14. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1 (2014). doi:10.1038/sdata.2014.22

    Google Scholar 

  15. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (The MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  16. M. Rupp, Machine learning for quantum mechanics in a nutshell. Int. J. Quantum Chem. 115, 1058–1073 (2015)

    Article  Google Scholar 

  17. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012)

    Article  Google Scholar 

  18. M. Rupp, R. Ramakrishnan, O.A. von Lilienfeld, Machine learning for quantum mechanical properties of atoms in molecules. J. Phys. Chem. Lett. 6, 3309–3313 (2015)

    Article  Google Scholar 

  19. E. Tadmor, R. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  20. C.J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the German Federal Ministry for Education and Research under the Eurostars project E!6935 ATOMMODEL. We would also like to thank Maharavo Randrianarivony for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Barker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barker, J., Bulin, J., Hamaekers, J., Mathias, S. (2017). LC-GAP: Localized Coulomb Descriptors for the Gaussian Approximation Potential. In: Griebel, M., Schüller, A., Schweitzer, M. (eds) Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham. https://doi.org/10.1007/978-3-319-62458-7_2

Download citation

Publish with us

Policies and ethics