Skip to main content

Imperialist Competition Based Clustering Algorithm to Improve the Lifetime of Wireless Sensor Network

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2016)

Abstract

In Wireless Sensor Network (WSN) nodes have limited energy and cannot be recharged. Clustering is one of the major approaches to optimize consumption of energy and data gathering. In these networks, clustering must be special to prolong network lifetime. In WSN, clustering has heuristic nature and belongs to NP-hard problems. In complex problems, search space is too big and grows exponentially. Because it takes too much time and cost, finding a deterministic optimized solution is difficult in such a short time. In this situation population-based algorithms are beneficial in finding optimum solutions. In this paper, a clustering algorithm is investigated and a novel idea, in line with the population-based algorithm, is presented. The proposed algorithm uses Imperialist Competition Algorithm (ICA) for the clustering of nodes. The results show that this algorithm postpones the dead time of nodes and prolongs network lifetime, compared to other discussed clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabeay, J.M., Ammer, M.J., da Silva, J.L., Patel, D., Roundry, S.: PicoRadio supports ad hoc ultra-low power wireless networking. IEEE Comput. Mag. 33, 42–48 (2000)

    Article  Google Scholar 

  2. Elahi, A., Hosseinabadi, A.R., Rostami, A.S.: Multi-hop fuzzy routing for wireless sensor network with mobile sink. Int. J. Sci. Eng. Res. 4(7), 2431–2439 (2013)

    Google Scholar 

  3. Kumarawadu, P., Dechene, D.J., Luccini, M., Sauer, A.: Algorithms for node clustering in wireless sensor networks: a survey, pp. 295–300, December 2008

    Google Scholar 

  4. Tavakkolai, H., Yadollahi, N., Yadollahi, M., Hosseinabadi, A.R., Rezaei, P., Kardgar, M.: Sensor selection wireless multimedia sensor network using gravitational search algorithm. Indian J. Sci. Technol. 8(14), 1–6 (2015)

    Article  Google Scholar 

  5. Karenos, K., Kalogeraki, V., Krishnamurthy, S.: Cluster-based congestion control for sensor networks. ACM Trans. Sensor Netw. 4, 1–39 (2008)

    Article  Google Scholar 

  6. Rostami, A.S., Bernety, H.M., Hosseinabadi, A.R.: A novel and optimized algorithm to select monitoring sensors by GSA. In: International Conference on Control, Instrumentation and Automation (ICCIA), pp. 829–834 (2011)

    Google Scholar 

  7. Elahi, A., Hosseinabadi, A.R., Rostami, A.S.: Improving news document clustering based on a hybrid similarity measurement. In: International Conference on Intelligent Computing and Intelligent Systems (ICIS), pp. 1–6 (2011)

    Google Scholar 

  8. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. In: IEEE Tmns. Wireless Commun. pp. 660–670, October 2002

    Google Scholar 

  9. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. In: IEEE Transactions on Wireless Communications, pp. 660–670, October 2002

    Google Scholar 

  10. Wang, A., Yang, D., Sun, D.: Clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Comput. Electr. Eng. 38(3), 662–671 (2012)

    Article  Google Scholar 

  11. Lindsey, S., Raghavendra, C.S.: PEGASIS: Powere-fficient Gathering in Sensor Information System. In: Proceedings IEEE Aerospace Conference, pp. 1125–1130, March 2002

    Google Scholar 

  12. Yueyang, L., Hong, J., Guangxin, Y.: An energy-efficient PEGASIS-based enhanced algorithm in wireless sensor networks, China Commun. Technol. Forum (2006)

    Google Scholar 

  13. Selvakennedy, S., Sinnappan, S.: An adaptive data dissemination strategy for wireless sensor networks, Int. J. Distrib. Sens. Netw., 3(1), 23–40 (2007)

    Google Scholar 

  14. Bandopadhya, S., Coyle, E.: An energy efficient hierarchical clustering algorithm for wireless sensor networks. In: Proceeding of IEEE INFOCOM, vol. 3, pp. 1713–1723, April 2003

    Google Scholar 

  15. Fahmy, S., Younis, O.: HEED: a hybrid energy-efficient distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mobile Comput. 3(4), 366–379 (2004)

    Article  Google Scholar 

  16. Manjeshwar, A., Agrawal, D.P.: TEEN: a protocol for enhanced efficiency in wireless sensor networks. In: The Proceedings of the 1st International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, April 2001

    Google Scholar 

  17. Smaragdakis, G., Matta, I., Bestavros, A.: SEP: a Stable Election Protocol for clustered heterogeneous wireless sensor networks. In: Proceedings of the International Workshop on SANPA, pp. 251–261 (2004)

    Google Scholar 

  18. Varma, S., Nigam, N.: U.S. Tiwary, Base Station Heterogeneous Wireless Sensor Network using clustering, pp. 1–6 (2008)

    Google Scholar 

  19. Qing, L., Zhu, Q., Wang, M.: Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Comput. Commun. 29(12), 2230–2237 (2006)

    Article  Google Scholar 

  20. Liu, Z., Zheng, Q., Xue, L., Guan, X.: A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Gener. Comput. Syst. 28(05), 780–790 (2012)

    Article  Google Scholar 

  21. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. 4, 1942–1948 (1995)

    Google Scholar 

  23. Hosseinabadi, A.R., Siar, H., Shamshirband, S., Shojafar, M., Nizam, M.H., Nasir, M.: Using the gravitational emulation local search algorithm to solve the multi-objective flexible dynamic job shop scheduling problem in Small and Medium Enterprises. Ann. Oper. Res. 229(1), 451–474 (2015). Springer

    Article  MathSciNet  MATH  Google Scholar 

  24. Rostami, A.S., Mohanna, F., Keshavarz, H., Hosseinabadi, A.R.: Solving multiple traveling salesman problem using the gravitational emulation local search algorithm. Appl. Math. Inf. Sci. 9(2), 699–709 (2015)

    MathSciNet  Google Scholar 

  25. Hosseinabadi, A.R., Kardgar, M., Shojafar, M., Shamshirband, S., Abraham, A.: GELS-GA: hybrid metaheuristic algorithm for solving multiple travelling salesman problem. In: International Conference on Intelligent Systems Design and Applications (ISDA), pp. 76–81 (2014)

    Google Scholar 

  26. Hosseinabadi, A.R., Yazdanpanah, M., Rostami, A.S.: A new search algorithm for solving symmetric traveling salesman problem based on gravity. World Appl. Sci. J. 16(10), 1387–1392 (2012)

    Google Scholar 

  27. Hosseinabadi, A.R., Farahabadi, A.B., Rostami, M.S., Lateran, A.F.: Presentation of a new and beneficial method through problem solving timing of open shop by random algorithm gravitational emulation local search. Int. J. Comput. Sci. 10(1), 745–752 (2013)

    Google Scholar 

  28. Hosseinabadi, A.R., Ghaleh, M.R., Hashemi, S.E.: Application of modified gravitational search algorithm to solve the problem of teaching hidden Markov model. Int. J. Comput. Sci. 10(3), 1–8 (2013)

    Google Scholar 

  29. H. Tavakkolai, A. R. Hosseinabadi, M. Yadollahi, T. Mohammadpour, “Using Gravitational Search Algorithm for in Advance Reservation of Resources in Solving the Scheduling Problem of Works in Workflow Workshop Environment”, Indian Journal of Science and Technology, Vol. 8(11), 1–16, June 2015

    Google Scholar 

  30. Hosseinabadi, A.R., Kardgar, M., Shojafar, M., Shamshirband, S., Abraham, A.: Gravitational search algorithm to solve open vehicle routing problem. In: 6th International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA 2015), Chapter Advances in Intelligent Systems and Computing, Kochi, India, pp. 93–103. Springer (2016)

    Google Scholar 

  31. Shijun, H., Yanyan, D., Zhou, R., Zhao, S.: A clustering routing for energy balance of WSN based on genetic algorithm. In: International Conference on Future Computer Support Education, IERI Procedia, vol. 2, pp. 788–793 (2012)

    Google Scholar 

  32. Shahvandi, L.K., Teshnehlab, M., Haroonabadi, A.: A novel clustering in wireless sensor networks used by imperialist competitive algorithm. Int. J. Adv. Eng. Sci. Technol. 8(2), 276–280 (2011)

    Google Scholar 

  33. Bayraklı, S., Zafer Erdogan, S.: Genetic algorithm based energy efficient clusters (GABEEC) in wireless sensor networks. In: The 3rd International Conference on Ambient Systems, Networks and Technologies, vol. 10, pp. 247–254 (2012)

    Google Scholar 

  34. MurtalaZungeru, A., MinnAng, L., PhooiSeng, K.: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison. J. Netw. Comput. Appl. 35, 1508–1536 (2012)

    Article  Google Scholar 

  35. Bore Gowda, S.B., Puttamadappa, C., Mruthyunjaya, H.S., Babu, N.V.: Sector based multi-hop clustering protocol for wireless sensor networks. Int. J. Comput. Appl. 43(13), 33–38 (2012)

    Google Scholar 

  36. Shojafar, M., Kardgar, M., Hosseinabadi, A.R., Shamshirband, S., Abraham, A.: TETS: a genetic-based scheduler in cloud computing to decrease energy and makespan. In: 15th International Conference on Hybrid Intelligent Systems (HIS 2015), Chapter Advances in Intelligent Systems and Computing 420, Seoul, South Korea, vol. 420, pp. 103–115. Springer (2016)

    Google Scholar 

  37. Shamshirband, S., Shojafar, M., Hosseinabadi, A.R., Abraham, A.: OVRP_ICA: an imperialist-based optimization algorithm for the open vehicle routing problem. In: International Conference on Hybrid Artificial Intelligence Systems (HAIS), vol. 9121, pp. 221–233. Springer, LNCS (2015)

    Google Scholar 

  38. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE Congr. Evol. Comput. 7, 4661–4666 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Rahmani Hosseinabadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Rostami, A.S., Badkoobe, M., Mohanna, F., Hosseinabadi, A.A.R., Balas, V.E. (2018). Imperialist Competition Based Clustering Algorithm to Improve the Lifetime of Wireless Sensor Network. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-319-62521-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62521-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62520-1

  • Online ISBN: 978-3-319-62521-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics