Skip to main content

Fuzzy Fractional Derivative: A New Definition

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 634))

Included in the following conference series:

Abstract

In this paper, a new definition of fuzzy fractional derivative is presented. The definition does not have the drawbacks of the previous definitions of fuzzy fractional derivatives. This definition does not necessitate that the diameter of the fuzzy function be monotonic, and it does not refer to derivative of order greater than the one that is considered. Moreover, the fractional derivative of a fuzzy constant is zero based on the definition. Restrictions associated to Caputo-type fuzzy fractional derivatives are expressed. Additionally, generalized Hukuhara difference and generalized difference of perfect type-2 fuzzy numbers are defined. Furthermore, using two examples the advantages of the new definition compared with the others are borne out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lupulescu, V.: Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 265, 63–85 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Malinowski, M.T.: Random fuzzy fractional integral equations – theoretical foundations. Fuzzy Sets Syst. 265, 39–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Van Hao, N.: Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst. 280, 58–90 (2015)

    Article  MathSciNet  Google Scholar 

  4. Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 72, 2859–2862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with uncertainty: application to the basset problem. Entropy 17(2), 885–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Takači, D., Takači, A., Takači, A.: On the operational solutions of fuzzy fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1100–1113 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Jafarian, A., Golmankhaneh, A.K., Baleanu, D.: On fuzzy fractional laplace, transformation. Adv. Math. Phys. (2014). http://dx.doi.org/10.1155/2014/295432

  8. Van Hoa, N.: Fuzzy fractional functional differential equations under caputo gH-differentiability. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 1134–1157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mazandarani, M., Najariyan, M.: Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2354–2372 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ahmadian, A., Senu, N., Larki, F., Salahshour, S., Suleiman, M., Islam, S.: A legendre approximation for solving a fuzzy fractional drug transduction model into the bloodstream. Advances in Intelligent Systems and Computing, vol. 287, pp. 25–34 (2014)

    Google Scholar 

  11. Puri, L.M., Ralescu, D.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bede, B., Gal, S.G.: Almost periodic fuzzy-number-valued functions. Fuzzy Sets Syst. 147, 385–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 17, 1372–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazandarani, M., Kamyad, A.V.: Modified fractional euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 18(1), 12–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salahshou, S., Allahviranloo, T., Abbasbandy, S., Baleanu, D.: Existence and uniqueness results for fractional differential equations with uncertainty. Adv. Differ. Equ. (2012). doi:10.1186/1687-1847-2012-112

    MathSciNet  MATH  Google Scholar 

  17. Allahviranloo, T., Armand, A., Gouyandeh, Z.: Fuzzy fractional differential equations under generalized fuzzy caputo derivative. J. Intell. Fuzzy Syst. 26(3), 1481–1490 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Jumarie, G.: Modified riemann-liouville derivative and fractional taylor series of non-differentiable functions further results. Comput. Math Appl. 51(9–10), 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gomes, L.T., Barros, L.C.: A note on the generalized difference and the generalized differentiability. Fuzzy Sets Syst. 280, 142–145 (2015)

    Article  MathSciNet  Google Scholar 

  20. Mazandarani, M., Najariyan, M.: Differentiability of type-2 fuzzy number-valued functions. Commun. Nonlinear Sci. Numer. Simul. 19(3), 710–725 (2014)

    Article  MathSciNet  Google Scholar 

  21. Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol. 295. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  22. Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. (2013). http://dx.doi.org/10.1155/2013/279681

  23. Mazandarani, M., Pariz, N., Kamyad, A.V.: Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Syst. (2017, in press). doi:10.1109/TFUZZ.2017.2659731

  24. Najariyan, M., Mazandarani, M., John, R.: Type-2 fuzzy linear systems. Granul. Comput. 2(3), 175–186 (2017). doi:10.1007/s41066-016-0037-y

    Article  Google Scholar 

  25. Najariyan, M., Farahi, M.H.: A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients. J. Comput. Appl. Math. 259, 682–694 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Najariyan, M., Farahi, M.H.: A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability. J. Franklin Inst. 352, 1836–1849 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors really appreciate the helpful comment and enthusiastic support of Professor Guy Jumarie, from Department of Mathematics, University of Québec at Montréal, Montréal, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Mazandarani .

Editor information

Editors and Affiliations

Appendix

Appendix

Definition 1.

The generalized difference of two perfect type-2 fuzzy numbers \( \tilde{u} \) and \( \tilde{v} \) (\( g_{2} - difference \)) is \( \tilde{w} \in E_{2} \) which is given by its \( \alpha - level \) and \( \tilde{\alpha } - plane \) [9] sets as follows

$$ \left[ {\tilde{w}} \right]_{{\tilde{\alpha }}}^{\alpha } = \left[ {\tilde{u}\frac{{g_{2} }}{{}}\tilde{v}} \right]_{{\tilde{\alpha }}}^{\alpha } = cl\left( {\bigcup\limits_{\gamma \ge \alpha } {\left( {\left[ {\tilde{u}} \right]_{{\tilde{\alpha }}}^{\gamma } \frac{{gH_{2} }}{{}}\left[ {\tilde{v}} \right]_{{\tilde{\alpha }}}^{\gamma } } \right)} } \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\alpha ,\tilde{\alpha } \in \left[ {0,1} \right] $$
(1)

Definition 2.

Let \( \tilde{f}:\left[ {a,b} \right] \subseteq {\mathbb{R}} \to E_{2} \) and its derivative be continuous and Lebesque integrable fuzzy-valued function, \( \tilde{G}(x) = \frac{1}{\varGamma (1 - \beta )}\int\limits_{a}^{x} {\frac{{\tilde{f}(t)\frac{{gH_{2} }}{{}}\tilde{f}\left( a \right)}}{{(x - t)^{\beta } }}} \,dt \). The function \( \tilde{f}\left( x \right) \) is the Caputo-type fuzzy fractional differentiable of order \( 0 < \beta < 1 \) at \( x_{0} \in \left( {a,b} \right] \) if there exists an element \( {}^{c}D^{\beta } \tilde{f}\left( {x_{0} } \right) \in E_{2} \) such that for \( h \) sufficiently near zero the following limit exists

$$ \mathop {\lim }\limits_{h \to 0} \frac{{\tilde{G}\left( {x_{0} + h} \right)\frac{{gH_{2} }}{{}}\tilde{G}\left( {x_{0} } \right)}}{h} = {}^{c}D^{\beta } \tilde{f}\left( {x_{0} } \right) $$
(2)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Najariyan, M., Mazandarani, M., Balas, V.E. (2018). Fuzzy Fractional Derivative: A New Definition. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-62524-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62524-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62523-2

  • Online ISBN: 978-3-319-62524-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics