Skip to main content

Automated Walkable Area Segmentation from Aerial Images for Evacuation Simulation

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2016)

Abstract

In this paper, we propose a novel, efficient and fast method to extract the walkable area from high-resolution aerial images for the purpose of computer-aided evacuation simulation for major public events. Compared to previous work, where authors only extracted roads and streets or solely focused on indoor scenarios, we present an approach to fully segment the walkable area of large outdoor environments. We address this challenge by modeling human movements in the terrain with a sophisticated seeded region growing algorithm (SRG), which utilizes digital surface models, true-orthophotos and inclination maps computed from aerial images. Further, we propose a novel annotation and scoring scheme especially developed for assessing the quality of the extracted evacuation maps. Finally, we present an extensive quantitative and qualitative evaluation, where we show the feasibility of our approach by evaluating different combinations of SRG methods and parameter settings on several real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Helbing, D., Mukerji, P.: Crowd disasters as systemic failures: analysis of the love parade disaster. EPJ Data Sci. 1, 1–40 (2012)

    Article  Google Scholar 

  2. Krausz, B., Bauckhage, C.: Loveparade 2010: automatic video analysis of a crowd disaster. Comput. Vis. Image Underst. 116, 307–319 (2012)

    Article  Google Scholar 

  3. Hsu, E.B., Burkle, F.M.: Cambodian bon om touk stampede highlights preventable tragedy. Prehospital Disaster Med. 27, 481–482 (2012)

    Article  Google Scholar 

  4. Taubenböck, H., Post, J., Kiefl, R., Roth, A., Ismail, F.A., Strunz, G., Dech, S.: Risk and vulnerability assessment to tsunami hazard using very high resolution satellite data: the case study of padang, indonesia. EARSeL eProceeding 8, 53–63 (2009)

    Google Scholar 

  5. Lämmel, G., Grether, D., Nagel, K.: The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp. Res. Part C Emerg. Technol. 18, 84–98 (2010)

    Article  Google Scholar 

  6. Schenk, F., RĂ¼ther, M., Bischof, H.: Automated segmentation of the walkable area from aerial images for evacuation simulation. In: Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 125–135 (2016)

    Google Scholar 

  7. Galea, E.R.: Simulating evacuation and circulation in planes, trains, buildings and ships using the exodus software. In: Pedestrian and Evacuation Dynamics, pp. 203–225. Springer (2002)

    Google Scholar 

  8. KlĂ¼pfel, H.: The simulation of crowds at very large events. In: Schadschneider A., Pöschel, T., KĂ¼hne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow 2005. Springer, Heidelberg (2007)

    Google Scholar 

  9. Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., et al.: Escapes: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: AAMAS, pp. 457–464 (2011)

    Google Scholar 

  10. Schneider, V., Könnecke, R.: Simulating evacuation processes with aseri. In: Pedestrian and Evacuation Dynamics, pp. 301–313 (2001)

    Google Scholar 

  11. Johnson, C.W.: Olympic venues. Safety Sci. 46(2008), 302–322 (2012)

    Google Scholar 

  12. Shi, C., Zhong, M., Nong, X., He, L., Shi, J., Feng, G.: Modeling and safety strategy of passenger evacuation in a metro station in China. Safety Sci. 50, 1319–1332 (2012)

    Article  Google Scholar 

  13. Tang, F., Ren, A.: GIS-based 3d evacuation simulation for indoor fire. Build. Environ. 49, 193–202 (2012)

    Article  Google Scholar 

  14. Mas, E., Adriano, B., Koshimura, S.: An integrated simulation of tsunami hazard and human evacuation in la punta, peru. J. Disaster Res. 8, 285–295 (2013)

    Article  Google Scholar 

  15. Koch, D.B., Payne, P.W.: An incident management preparedness and coordination toolkit. In: Global Humanitarian Technology Conference (GHTC), pp. 31–35. IEEE (2012)

    Google Scholar 

  16. Dal Poz, A.P., Gallis, R.A., da Silva, J.F., Martins, É.F.: Object-space road extraction in rural areas using stereoscopic aerial images. IEEE Geosci. Remote Sens. Lett. 9, 654–658 (2012)

    Article  Google Scholar 

  17. Hu, J., Razdan, A., Femiani, J.C., Cui, M., Wonka, P.: Road network extraction and intersection detection from aerial images by tracking road footprints. IEEE Trans. Geosci. Remote Sens. 45, 4144–4157 (2007)

    Article  Google Scholar 

  18. Lin, Y., Saripalli, S.: Road detection and tracking from aerial desert imagery. J. Intell. Robot. Syst. 65, 345–359 (2012)

    Article  Google Scholar 

  19. Zhou, H., Kong, H., Wei, L., Creighton, D., Nahavandi, S.: Efficient road detection and tracking for unmanned aerial vehicle. IEEE Trans. Intell. Transp. Syst. 16, 297–309 (2015)

    Article  Google Scholar 

  20. Cheriyadat, A.M.: Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52, 439–451 (2014)

    Article  Google Scholar 

  21. Huth, J., Kuenzer, C., Wehrmann, T., Gebhardt, S., Tuan, V.Q., Dech, S.: Land cover and land use classification with twopac: towards automated processing for pixel-and object-based image classification. Remote Sens. 4, 2530–2553 (2012)

    Article  Google Scholar 

  22. Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. Trans. Geosci. Remote Sens. 53, 3325–3337 (2015)

    Article  Google Scholar 

  23. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641–647 (1994)

    Article  Google Scholar 

  24. Irschara, A., Rumpler, M., Meixner, P., Pock, T., Bischof, H.: Efficient and globally optimal multi view dense matching for aerial images. ISPRS Ann. Photogrammetry Remote Sens. Spatial Inf. Sci. 1, 227–232 (2012)

    Article  Google Scholar 

  25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  26. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  27. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). doi:10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  28. Rumpler, M., Wendel, A., Bischof, H.: Probabilistic range image integration for DSM and true-orthophoto generation. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 533–544. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38886-6_50

    Chapter  Google Scholar 

  29. Collins, R.T.: A space-sweep approach to true multi-image matching. In: Computer Vision and Pattern Recognition, pp. 358–363. IEEE (1996)

    Google Scholar 

  30. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32060-6_26

    Chapter  Google Scholar 

  31. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenom. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  34. Jaccard, P.: Nouvelles recherches sur la distribution florale (1908)

    Google Scholar 

Download references

Acknowledgements

This work was financed by the KIRAS program (no 840858, AIRPLAN) under supervision of the Austrian Research Promotion Agency (FFG) and in cooperation with the Austrian Ministry for Traffic, Innovation and Technology (BMVIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schenk .

Editor information

Editors and Affiliations

A Appendix

A Appendix

In the Appendix, we show a typical evacuation simulation scenario where our generated digital map can be used. We use the map of the Marienhof (Munich, Germany) generated in Experiment A and utilize the software tool PedGo [8]. The package comprises three different programs:

  • PedEd - Used for editing the map, placing persons and marking the exits

  • PedGo - The simulation program, where various scenarios can be simulated

  • PedView - A 3D visualization of the previously calculated simulations

The first step is always loading the map into the editor PedEd and placing the exits (see Fig. 10, left). They are usually at the end of the streets leading away from the central area. After that, persons (or agents) can be put onto the map and corrections to the map can be made. The whole process usually takes less than three minutes. The next step is starting the simulation tool (PedGo) and loading the project. To get an estimate of the average evacuation time, multiple simulations should be performed (see Fig. 10, right). With PedView we can then view simulation files generated with PedGo in full 3D (see Fig. 11).

Fig. 10.
figure 10

With PedEd the extracted CAD model can be edited and then various simulations can be performed with PedGo.

Fig. 11.
figure 11

PedView can present the simulations calculated with PedGo in 3D.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schenk, F., RĂ¼ther, M., Bischof, H. (2017). Automated Walkable Area Segmentation from Aerial Images for Evacuation Simulation. In: Grueau, C., Laurini, R., Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2016. Communications in Computer and Information Science, vol 741. Springer, Cham. https://doi.org/10.1007/978-3-319-62618-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62618-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62617-8

  • Online ISBN: 978-3-319-62618-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics