Skip to main content

Visual Scenes Mining for Agent Awareness Module

  • Conference paper
  • First Online:
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10357))

Included in the following conference series:

  • 2018 Accesses

Abstract

Most agents obtain knowledges from natural scenes through some single preestablished rules. In practice, those single rules can’t achieve the aim to freely awareness the natural scenes, such as the visual scenes. Inspired by biological visual cortex (V1) and higher brain areas perceiving visual features, in this paper we propose an improved visual awareness module, called as visual scenes mining module, for the agent ABGP-CNN in order to directly mine the visual scenes information. Then ABGP-CNN with the visual scenes mining module is deployed on a toy car. The visual information mining from the nature scenes is served as the knowledges of the agent ABGP-CNN to drive the toy car. The toy car deployed the agent ABGP-CNN can easily understand the special natural visual scenes, and has the ability to plan its behaviors according to the visual information mining from the nature scenes. The application of the agent ABGP-CNN with visual scenes mining module enhances the capability of communication between the toy car and the natural visual scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bratman, M.E.: Intention, Plans, and Practical Reason. Cambridge University Press (1987)

    Google Scholar 

  2. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the 21th International Joint Conference on Artificial Intelligence, Vol. 22, pp. 1237–1242 (2011)

    Google Scholar 

  3. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Proceedings of the 25th Conference on Computer Vision an Pattern Recognition, pp. 3642–3649. IEEE (2012)

    Google Scholar 

  4. Department of Applied Mathematics in Tongji University: Advanced Mathematics. Higher Education Press, Beijing (2014)

    Google Scholar 

  5. Duan, X.: Improvement of Matching Algorithm Based on Gray Image. Master’s thesis, Central South University (2012)

    Google Scholar 

  6. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming in 3apl. Journal of Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

    Article  Google Scholar 

  7. Jarrett, K., Kavukcuoglu, K., Lecun, Y.: What is the best multi-stage architecture for object recognition?. In: IEEE 12th International Conference on Computer Vision, pp. 2146–2153 (2009)

    Google Scholar 

  8. Johnson, J.L., Padgett, M.L.: Pcnn models and applications. IEEE Transactions on Neural Networks 10(3), 480–498 (1999)

    Article  Google Scholar 

  9. Korekado, K., Morie, T., Nomura, O., Ando, H., Nakano, T., Matsugu, M., Iwata, A.: A convolutional neural network VLSI for image recognition using merged/mixed analog-digital architecture. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 169–176. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45226-3_24

    Chapter  Google Scholar 

  10. Lehman, J.F., Laird, J., Rosenbloom, P.: A gentle introduction to soar, an architecture for human cognition. Invitation to Cognitive Science 4, 212–249 (1996)

    Google Scholar 

  11. Lindblad, T., Kinser, J.: Image Processing Using Pulse-Coupled Neural Networks. Springer-Verlag Berlin Heidelberg (2005)

    Google Scholar 

  12. Lyu, S., Simoncelli, E.P., Hughes, H.: Nonlinear image representation using divisive normalization. In: Proceedings of the 21th Conference on Computer Vision an Pattern Recognition, pp. 23–28 (2008)

    Google Scholar 

  13. Ma, G., Yang, X., Lu, C., Zhang, B., Shi, Z.: A visual awareness pathway in cognitive model abgp. High Technology Letters 22(41), 395–403 (2016)

    Google Scholar 

  14. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing policies. In: Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks, pp. 3–12 (2004)

    Google Scholar 

  15. Pokahr, A., Braubach, L.: The active components approach for distributed systems development. International Journal of Parallel, Emergent and Distributed Systems 28(4), 321–369 (2013)

    Article  Google Scholar 

  16. Rao, A.S., Georgeff, M.P.: Bdi agents: from theory to practice. In: Proceedings of the First International Conference on Multi-Agent Systems, pp. 312–319 (1995)

    Google Scholar 

  17. Shi, Z., Wang, X., Yue, J.: Cognitive cycle in mind model cam. International Journal of Intelligence Science 1(2), 25–34 (2011)

    Article  Google Scholar 

  18. Shi, Z., Zhang, J., Yue, J., Yang, X.: A cognitive model for multi-agent collaboration. International Journal of Intelligence Science 4(1), 1–6 (2013)

    Article  Google Scholar 

  19. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92 (1993)

    Article  MathSciNet  Google Scholar 

  20. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: The 12th International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  21. Wang, Z., Ma, Y., Gu, J.: Multi-focus image fusion using pcnn. Pattern Recognition 43(6), 2003–2016 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ma, G., Tang, Z., Yang, X., Shi, Z., Yang, K. (2017). Visual Scenes Mining for Agent Awareness Module. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2017. Lecture Notes in Computer Science(), vol 10357. Springer, Cham. https://doi.org/10.1007/978-3-319-62701-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62701-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62700-7

  • Online ISBN: 978-3-319-62701-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics