Skip to main content

Connecting Decidability and Complexity for MSO Logic

  • Conference paper
  • First Online:
  • 545 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10396))

Abstract

This work is about studying reasons for (un)decidability of variants of Monadic Second-order (mso) logic over infinite structures. Thus, it focuses on connecting the fact that a given theory is (un)decidable with certain measures of complexity of that theory.

The first of the measures is the topological complexity. In that case, it turns out that there are strong connections between high topological complexity of languages available in a given logic, and its undecidability. One of the milestone results in this context is the Shelah’s proof of undecidability of mso over reals.

The second complexity measure focuses on the axiomatic strength needed to actually prove decidability of the given theory. The idea is to apply techniques of reverse mathematics to the classical decidability results from automata theory. Recently, both crucial theorems of the area (the results of Büchi and Rabin) have been characterised in these terms. In both cases the proof gives strong relations between decidability of the mso theory with concepts of classical mathematics: determinacy, Ramsey theorems, weak Konig’s lemma, etc.

The author was supported by the Polish National Science Centre grant no. UMO-2016/21/D/ST6/00491.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A posteriori, the considered set Q needs to violate Baire Property.

References

  1. Blumensath, A., Colcombet, T., Parys, P.: On a fragment of AMSO and tiling systems. In: STACS, pp. 19:1–19:14 (2016)

    Google Scholar 

  2. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30124-0_7

    Chapter  Google Scholar 

  3. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theor. Comput. Syst. 48(3), 554–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bojańczyk, M.: Weak MSO+U with path quantifiers over infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 38–49. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_4

    Google Scholar 

  5. Bojańczyk, M., Colcombet, T.: Bounds in \(\omega \)-regularity. In: LICS, pp. 285–296 (2006)

    Google Scholar 

  6. Bojańczyk, M., Gogacz, T., Michalewski, H., Skrzypczak, M.: On the decidability of MSO+U on infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 50–61. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_5

    Google Scholar 

  7. Bojańczyk, M., Parys, P., Toruńczyk, S.: The MSO+U theory of (n, \(<\)) is undecidable. In: STACS, pp. 1–8 (2016)

    Google Scholar 

  8. Bojańczyk, M., Toruńczyk, S.: Deterministic automata and extensions of weak MSO. In: FSTTCS, pp. 73–84 (2009)

    Google Scholar 

  9. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Lane, S.M., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 1–11. Springer, New York (1962)

    Google Scholar 

  10. Carayol, A., Löding, C., Niwiński, D., Walukiewicz, I.: Choice functions and well-orderings over the infinite binary tree. Cent. Europ. J. of Math. 8, 662–682 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Carton, O., Colcombet, T., Puppis, G.: Regular languages of words over countable linear orderings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 125–136. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8_9

    Chapter  Google Scholar 

  12. Friedman, H.: Some systems of second order arithmetic and their use. pp. 235–242 (1975)

    Google Scholar 

  13. Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton University Press, New Jersy (1940)

    MATH  Google Scholar 

  14. Gogacz, T., Michalewski, H., Mio, M., Skrzypczak, M.: Measure properties of game tree languages. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 303–314. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44522-8_26

    Google Scholar 

  15. Gurevich, Y., Shelah, S.: Monadic theory of order and topology in ZFC. Annal. Math. Logic 23(2–3), 179–198 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hummel, S., Skrzypczak, M.: The topological complexity of MSO+U and related automata models. Fundam. Inf. 119(1), 87–111 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Jech, T.: Set Theory. Springer, Hiedelberg (2002)

    MATH  Google Scholar 

  18. Kechris, A.: Classical descriptive set theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  19. Kolmogorov, A.N.: Operations sur des ensembles. Mat. Sb. 35, 415–422 (1928). (in Russian, summary in French)

    Google Scholar 

  20. Kołodziejczyk, L.A., Michalewski, H.: How unprovable is Rabin’s decidability theorem? In: LICS, pp. 788–797 (2016)

    Google Scholar 

  21. Kołodziejczyk, L.A., Michalewski, H., Pradic, P., Skrzypczak, M.: The logical strength of Büchi’s decidability theorem. In: CSL, pp. 36:1–36:16 (2016)

    Google Scholar 

  22. Liu, J.: \({\sf RT}^{2}_{2}\) does not imply \({\sf WKL}_{0}\). J. Symbol. Logic 77(2), 609–620 (2012)

    Article  Google Scholar 

  23. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Control 9(5), 521–530 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  25. Rabinovich, A.: On decidability of monadic logic of order over the naturals extended by monadic predicates. Inf. Comput. 205(6), 870–889 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shelah, S.: The monadic theory of order. Annal. Math. 102(3), 379–419 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd edn. Cambridge University Press, Association for Symbolic Logic, Cambridge, Poughkeepsie (2009)

    Book  MATH  Google Scholar 

  28. Thomas, W., Lescow, H.: Logical specifications of infinite computations. In: Bakker, J.W., Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 583–621. Springer, Heidelberg (1994). doi:10.1007/3-540-58043-3_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Skrzypczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Skrzypczak, M. (2017). Connecting Decidability and Complexity for MSO Logic. In: Charlier, É., Leroy, J., Rigo, M. (eds) Developments in Language Theory. DLT 2017. Lecture Notes in Computer Science(), vol 10396. Springer, Cham. https://doi.org/10.1007/978-3-319-62809-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62809-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62808-0

  • Online ISBN: 978-3-319-62809-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics