Skip to main content

Identifying Conversational Message Threads by Integrating Classification and Data Clustering

  • Conference paper
  • First Online:
Data Management Technologies and Applications (DATA 2016)

Abstract

Conversational message thread identification regards a wide spectrum of applications, ranging from social network marketing to virus propagation, digital forensics, etc. Many different approaches have been proposed in literature for the identification of conversational threads focusing on features that are strongly dependent on the dataset. In this paper, we introduce a novel method to identify threads from any type of conversational texts overcoming the limitation of previously determining specific features for each dataset. Given a pool of messages, our method extracts and maps in a three dimensional representation the semantic content, the social interactions and the timestamp; then it clusters each message into conversational threads. We extend our previous work by introducing a deep learning approach and by performing new extensive experiments and comparisons with classical learning algorithms.

G. Domeniconi—This work was partially supported by the european project “TOREADOR” (grant agreement no. H2020-688797).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.alchemyapi.com/.

  2. 2.

    https://github.com/yusugomori/DeepLearning.

  3. 3.

    http://tomcat.apache.org/mail/dev.

  4. 4.

    http://www.redhat.com/archives/fedora-devel-list.

  5. 5.

    https://www.facebook.com/healthychoice.

  6. 6.

    https://www.facebook.com/WHO.

  7. 7.

    https://developers.facebook.com/docs/graph-api.

  8. 8.

    https://www.facebook.com/groups/533592236741787.

  9. 9.

    https://www.facebook.com/groups/848992498510493.

  10. 10.

    https://www.jwz.org/doc/threading.html.

  11. 11.

    http://wordnet.princeton.edu/.

References

  1. Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities by using link analysis. In: CIKM, Lisbon, Portugal, 6–10 November 2007, pp. 919–922 (2007)

    Google Scholar 

  2. Coussement, K., den Poel, D.V.: Improving customer complaint management by automatic email classification using linguistic style features as predictors. Decis. Support Syst. 44, 870–882 (2008)

    Article  Google Scholar 

  3. Glass, K., Colbaugh, R.: Toward emerging topic detection for business intelligence: Predictive analysis of meme’ dynamics. CoRR abs/1012.5994 (2010)

    Google Scholar 

  4. Khan, F.M., Fisher, T.A., Shuler, L., Wu, T., Pottenger, W.M.: Mining chatroom conversations for social and semantic interactions. In: Technical report LU-CSE-02-011, Lehigh University (2002)

    Google Scholar 

  5. Hofmann, T.: Probabilistic latent semantic indexing. In: ACM SIGIR, pp. 50–57. ACM (1999)

    Google Scholar 

  6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  7. Shen, D., Yang, Q., Sun, J., Chen, Z.: Thread detection in dynamic text message streams. In: SIGIR, Washington, USA, 6–11 August 2006, pp. 35–42 (2006)

    Google Scholar 

  8. Huang, J., Zhou, B., Wu, Q., Wang, X., Jia, Y.: Contextual correlation based thread detection in short text message streams. J. Intell. Inf. Syst. 38, 449–464 (2012)

    Article  Google Scholar 

  9. Adams, P.H., Martell, C.H.: Topic detection and extraction in chat. In: ICSC 2008, pp. 581–588 (2008)

    Google Scholar 

  10. Yeh, J.: Email thread reassembly using similarity matching. In: CEAS, 27–28 July 2006, Mountain View, California, USA (2006)

    Google Scholar 

  11. Domeniconi, G., Semertzidis, K., Lopez, V., Daly, E.M., Kotoulas, S., Moro, G.: A novel method for unsupervised and supervised conversational message thread detection. In: Proceedings of the 5th International Conference on Data Management Technologies and Applications, vol. 1, DATA, pp. 43–54 (2016)

    Google Scholar 

  12. Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: ICWSM, Boulder, Colorado, USA, 26–28 March 2007

    Google Scholar 

  13. Lena, P., Domeniconi, G., Margara, L., Moro, G.: Gota: go term annotation of biomedical literature. BMC Bioinform. 16, 346 (2015)

    Article  Google Scholar 

  14. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996, Portland, Oregon, USA, pp. 226–231 (1996)

    Google Scholar 

  15. Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A.: Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42, 2785–2797 (2015)

    Article  Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  17. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2, 1 (2015)

    Article  Google Scholar 

  18. Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, 22–26 July 2007, Vancouver, British Columbia, Canada, pp. 1501–1506 (2007)

    Google Scholar 

  19. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)

    Article  Google Scholar 

  20. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: A comparison of term weighting schemes for text classification and sentiment analysis with a supervised variant of tf.idf. In: Data Management Technologies and Applications (DATA 2015), Revised Selected Papers, pp. 39–58, vol. 553. Springer, Heidelberg (2016)

    Google Scholar 

  21. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24, 513–523 (1988)

    Article  Google Scholar 

  22. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24, 35–43 (2001)

    Google Scholar 

  23. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  24. Aumayr, E., Chan, J., Hayes, C.: Reconstruction of threaded conversations in online discussion forums. In: Weblogs and Social Media (2011)

    Google Scholar 

  25. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Book in preparation for MIT Press (2016)

    Google Scholar 

  26. Sugomori, Y.: Java Deep Learning Essentials. Packt Publishing Ltd., Birmingham (2016)

    Google Scholar 

  27. Ulrich, J., Murray, G., Carenini, G.: A publicly available annotated corpus for supervised email summarization. In: AAAI08 EMAIL Workshop (2008)

    Google Scholar 

  28. Soboroff, I., de Vries, A.P., Craswell, N.: Overview of the TREC 2006 enterprise track. In: TREC, Gaithersburg, Maryland, USA, 14–17 November 2006 (2006)

    Google Scholar 

  29. Dehghani, M., Shakery, A., Asadpour, M., Koushkestani, A.: A learning approach for email conversation thread reconstruction. J. Inf. Sci. 39, 846–863 (2013)

    Article  Google Scholar 

  30. Erera, S., Carmel, D.: Conversation detection in email systems. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 498–505. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78646-7_48

    Chapter  Google Scholar 

  31. Wu, Y., Oard, D.W.: Indexing emails and email threads for retrieval. In: SIGIR, pp. 665–666 (2005)

    Google Scholar 

  32. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

    Article  Google Scholar 

  33. Raschka, S.: Python Machine Learning. Packt Publishing, Birmingham (2015)

    Google Scholar 

  34. Wang, X., Xu, M., Zheng, N., Chen, M.: Email conversations reconstruction based on messages threading for multi-person. In: ETTANDGRS 2008, vol. 1, pp. 676–680 (2008)

    Google Scholar 

  35. Joshi, S., Contractor, D., Ng, K., Deshpande, P.M., Hampp, T.: Auto-grouping emails for faster e-discovery. PVLDB 4, 1284–1294 (2011)

    Google Scholar 

  36. Wang, H., Wang, C., Zhai, C., Han, J.: Learning online discussion structures by conditional random fields. In: SIGIR 2011, Beijing, China, 25–29 July 2011, pp. 435–444 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Domeniconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Domeniconi, G., Semertzidis, K., Moro, G., Lopez, V., Kotoulas, S., Daly, E.M. (2017). Identifying Conversational Message Threads by Integrating Classification and Data Clustering. In: Francalanci, C., Helfert, M. (eds) Data Management Technologies and Applications. DATA 2016. Communications in Computer and Information Science, vol 737. Springer, Cham. https://doi.org/10.1007/978-3-319-62911-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62911-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62910-0

  • Online ISBN: 978-3-319-62911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics