Skip to main content

An Integer Linear Programming Model for Binary Knapsack Problem with Dependent Item Values

  • Conference paper
  • First Online:
AI 2017: Advances in Artificial Intelligence (AI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10400))

Included in the following conference series:

Abstract

Binary Knapsack Problem (BKP) is to select a subset of items with the highest value while keeping the size within the capacity of the knapsack. This paper presents an Integer Linear Programming (ILP) model for a variation of BKP where the value of an item may depend on presence or absence of other items in the knapsack. Strengths of such Value-Related Dependencies are assumed to be imprecise and hard to specify. To capture this imprecision, we have proposed modeling value-related dependencies using fuzzy graphs and their algebraic structure. We have demonstrated through simulations that our proposed ILP model is scalable to large number of items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Burkard, R.E.: Quadratic assignment problems. Eur. J. Oper. Res. 15(3), 283–289 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carraway, R.L., Schmidt, R.L., Weatherford, L.R.: An algorithm for maximizing target achievement in the stochastic knapsack problem with normal returns. Naval Res. Logist. (NRL) 40(2), 161–173 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Kleer, J., Brown, J.S.: A qualitative physics based on confluences. Artif. Intell. 24(1), 7–83 (1984)

    Article  Google Scholar 

  5. Henig, M.I.: Risk criteria in a stochastic knapsack problem. Oper. Res. 38(5), 820–825 (1990)

    Article  MathSciNet  Google Scholar 

  6. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  7. Kivijärvi, H., Korhonen, P., Wallenius, J.: Operations research and its practice in finland. Interfaces 16(4), 53–59 (1986)

    Article  Google Scholar 

  8. Kusiak, A., Wang, J.: Dependency analysis in constraint negotiation. IEEE Trans. Syst. Man Cybern. 25(9), 1301–1313 (1995)

    Article  Google Scholar 

  9. Markowitz, H.M.: Foundations of portfolio theory. J. Financ. 46(2), 469–477 (1991)

    Article  Google Scholar 

  10. Mordeson, J.N., Nair, P.S.: Applications of fuzzy graphs. In: Mordeson, J.N., Nair, P.S. (eds.) Fuzzy Graphs and Fuzzy Hypergraphs. Studies in Fuzziness and Soft Computing, vol. 46, pp. 83–133. PhysicaVerlag HD, Heidelberg (2000). doi:10.1007/978-3-7908-1854-3_3

    Chapter  Google Scholar 

  11. Mougouei, D.: Factoring requirement dependencies in software requirement selection using graphs and integer programming. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, pp. 884–887. ACM (2016)

    Google Scholar 

  12. Mougouei, D., Nurhayati, W.: A fuzzy-based technique for describing security requirements of intrusion tolerant systems. Int. J. Softw. Eng. Appl. 7(2), 99–112 (2013)

    Google Scholar 

  13. Mougouei, D., Powers, D.: Dependency-aware software release planning through mining user preferences. arXiv preprint arXiv:1702.05592 (2017)

  14. Mougouei, D., Powers, D.M.W., Moeini, A.: Dependency-aware software release planning. In: Proceedings of the 39th International Conference on Software Engineering Companion, ICSE-C 2017, pp. 198–200. IEEE Press, Piscataway (2017)

    Google Scholar 

  15. Mougouei, D., Rahman, W.N.W.A., Almasi, M.M.: Measuring security of web services in requirement engineering phase. Int. J. Cyber-Secur. Digit. Forensics (IJCSDF) 1(2), 89–98 (2012)

    Google Scholar 

  16. Rosenfeld, A.: Fuzzy graphs. Fuzzy Sets Appl. 77, 95 (1975)

    MATH  Google Scholar 

  17. Sharpe, W.F.: Portfolio Theory and Capital Markets. McGraw-Hill College, New York (1970)

    Google Scholar 

  18. Sniedovich, M.: Preference order stochastic knapsack problems: methodological issues. J. Oper. Res. Soc. 31(11), 1025–1032 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sprenger, J.: Foundations for a probabilistic theory of causal strength (2016)

    Google Scholar 

  20. Steinberg, E., Parks, M.: A preference order dynamic program for a knapsack problem with stochastic rewards. J. Oper. Res. Soc. 30(2), 141–147 (1979)

    Article  MATH  Google Scholar 

  21. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  22. Wellman, M.P., Derthick, M.: Formulation of Tradeoffs in Planning Under Uncertainty. Pitman, London (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Mougouei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mougouei, D., Powers, D.M.W., Moeini, A. (2017). An Integer Linear Programming Model for Binary Knapsack Problem with Dependent Item Values. In: Peng, W., Alahakoon, D., Li, X. (eds) AI 2017: Advances in Artificial Intelligence. AI 2017. Lecture Notes in Computer Science(), vol 10400. Springer, Cham. https://doi.org/10.1007/978-3-319-63004-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63004-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63003-8

  • Online ISBN: 978-3-319-63004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics