Abstract
In the analysis of reactive systems a quantitative objective assigns a real value to every trace of the system. The value decision problem for a quantitative objective requires a trace whose value is at least a given threshold, and the exact value decision problem requires a trace whose value is exactly the threshold. We compare the computational complexity of the value and exact value decision problems for classical quantitative objectives, such as sum, discounted sum, energy, and mean-payoff for two standard models of reactive systems, namely, graphs and graph games.
This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 and S11407-N23 (RiSE/SHiNE), and Z211-N23 (Wittgenstein Award), ERC Start grant (279307: Graph Games), Vienna Science and Technology Fund (WWTF) through project ICT15-003.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersson, D.: An improved algorithm for discounted payoff games. In: Proceedings of 11th ESSLLI Student Session, pp. 91–98 (2006)
Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In: Proceedings of LICS: Symposium on Logic in Computer Science, pp. 32–43. IEEE Computer Society (2015)
Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: Proceeings of LICS: Symposium on Logic in Computer Science, pp. 750–761. IEEE Computer Society (2015)
Bonet, B., Geffner, H.: Solving POMDPs: RTDP-Bel vs. point-based algorithms. In: Proceedings of IJCAI: International Joint Conference on Artificial Intelligence, pp. 1641–1646 (2009)
Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85778-5_4
Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1_40
Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: To reach or not to reach? efficient algorithms for total-payoff games. In: Proceedings of CONCUR: Concurrency Theory. LIPIcs, vol. 42, pp. 297–310. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)
Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)
Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45212-6_9
Chatterjee, K., Chmelik, M.: Indefinite-horizon reachability in Goal-DEC-POMDPs. In: Proceedings of ICAPS: International Conference on Automated Planning and Scheduling, pp. 88–96. AAAI Press (2016)
Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure reachability in POMDPs. Artif. Intell. 234, 26–48 (2016)
Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verification in graphs and MDPs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 228–242. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_17
Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). doi:10.1007/11672142_26
Chatterjee, K., Velner, Y.: Hyperplane Separation technique for multidimensional mean-payoff games. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 500–515. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40184-8_35
Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Trivedi, A., Ummels, M.: Playing stochastic games precisely. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 348–363. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1_25
Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)
Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer-Verlag, Heidelberg (1997)
Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by functional automata. Logical Methods Comput. Sci. 11(3) (2015)
Gurvich, V.A., Karzanov, A.V., Khachiyan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Comput. Math. Math. Phy. 28(5), 85–91 (1988)
Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04081-8_25
Hansen, T.D., Miltersen, P.B., Zwick, U.: Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor. J. ACM 60(1), 1:1–1:16 (2013)
Hunter, P.: Reachability in succinct one-counter games. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 37–49. Springer, Cham (2015). doi:10.1007/978-3-319-24537-9_5
Hunter, P., Raskin, J.-F.: Quantitative games with interval objectives. In: Proceedings of FSTTCS, vol. 29 of LIPIcs, pp. 365–377. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)
Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are in pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47666-6_21
Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23, 309–311 (1978)
Nykänen, M., Ukkonen, E.: The exact path length problem. J. Algorithms 42(1), 41–53 (2002)
Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)
Reichert, J.: On the complexity of counter reachability games. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 196–208. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41036-9_18
Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin, J.-F.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput. 241, 177–196 (2015)
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Chatterjee, K., Doyen, L., Henzinger, T.A. (2017). The Cost of Exactness in Quantitative Reachability. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds) Models, Algorithms, Logics and Tools. Lecture Notes in Computer Science(), vol 10460. Springer, Cham. https://doi.org/10.1007/978-3-319-63121-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-63121-9_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63120-2
Online ISBN: 978-3-319-63121-9
eBook Packages: Computer ScienceComputer Science (R0)