Abstract
This paper presents an abstraction-refinement framework for Segala’s probabilistic automata (PA), a slight variant of Markov decision processes. We use Condon and Ladner’s two-player probabilistic game automata extended with possible and required transitions—as in Larsen and Thomsen’s modal transition systems—as abstract models. The key idea is to refine player-one and player-two states separately resulting in a nested abstract-refine loop. We show the adequacy of this approach for obtaining tight bounds on extremal reachability probabilities.
This work has been partially funded by the Excellence Initiative of the German federal and state government and the CDZ project CAP (GZ 1023).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As this paper does not cover parallel composition all PGAs are closed. For modeling PGAs in a compositonal manner though, the distinction between internal and other actions is important, see [7].
- 2.
For example, let \(x=\max \) in \( \mathrm {Pr}^x(T^{\prime })\) then \(\mathbf {1}=\max \) and \(\mathbf {2}=\min \) (player-one maximizes whereas the player-two minimizes the probability) or vice versa.
- 3.
This may converge slower than allowing for coarser splittings (as in [5]), but yields smaller state spaces.
References
Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic J. Comput. 2(2), 250–273 (1995)
Norman, G.: Analysing randomized distributed algorithms. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 384–418. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24611-4_11
Huth, M.: On finite-state approximants for probabilistic computation tree logic. Theoret. Comput. Sci. 346(1), 113–134 (2005)
Delahaye, B., Katoen, J.P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wasowski, A.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013)
Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based abstraction-refinement framework for Markov decision processes. Formal Methods Syst. Des. 36(3), 246–280 (2010)
Vira, F.S., Katoen, J.-P.: Tight game abstractions of probabilistic automata. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 576–591. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6_39
Sher, F., Katoen, J.-P.: Compositional abstraction techniques for probabilistic automata. In: Baeten, J.C.M., Ball, T., Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 325–341. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33475-7_23
Condon, A., Ladner, R.E.: Probabilistic game automata. J. Comput. Syst. Sci. 36(3), 452–489 (1988)
Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal and mixed specifications. Bull. EATCS 95, 94–129 (2008)
Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: a foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001). doi:10.1007/3-540-45309-1_11
Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. USA 39(10), 1095–1100 (1953)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16, 580–595 (1991)
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Math. 5(2), 285–309 (1955)
Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society (1991)
Larsen, K.G., Thomsen, B.: Compositional proofs by partial specification of processes. In: Chytil, M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 414–423. Springer, Heidelberg (1988). doi:10.1007/BFb0017164
Sher, F.: Abstraction and refinement of probabilistic automata using modal stochastic games. Ph.D. thesis, RWTH Aachen University Aachener Informatik-Berichte AIB-2015-10 (2015)
D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of probabilistic systems by successive refinements. In: Alfaro, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001). doi:10.1007/3-540-44804-7_3
Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for probabilistic systems. J. Log. Algebr. Program. 81(4), 356–389 (2012)
Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1_16
Dehnert, C., Gebler, D., Volpato, M., Jansen, D.N.: On abstraction of probabilistic systems. In: Remke, A., Stoelinga, M. (eds.) Stochastic Model Checking. Rigorous Dependability Analysis Using Model Checking Techniques for Stochastic Systems. LNCS, vol. 8453, pp. 87–116. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45489-3_4
de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: uncertainty, but with precision. In: LICS, pp. 170–179. IEEE Computer Society (2004)
Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2_9
Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2_26
Hermanns, H., Krčál, J., Křetínský, J.: Probabilistic bisimulation: naturally on distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 249–265. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6_18
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)
Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE Computer Society (1988)
Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Constraint Markov chains. Theoret. Comput. Sci. 412(34), 4373–4404 (2011)
Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal in 1995. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 431–434. Springer, Heidelberg (1996). doi:10.1007/3-540-61042-1_66
D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retransmission protocol must be on time!. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 416–431. Springer, Heidelberg (1997). doi:10.1007/BFb0035403
Acknowledgements
This work is strongly inspired by and heavily builds upon the work of Kim G. Larsen. The idea of using possible (may) and required (must) transitions goes back to his seminal work with Thomsen [28]. Simulation and refinement relations for probabilistic models originated in his work with Jonsson [16]. Kim developed one of the first, if not the very first, abstraction-refinement technique for MDPs [19]. His work on constraint Markov chains [29] provided the basis for our joint work on abstract PAs [4]. The uncertainty of the non-deterministic choices in APA is modeled by modal transitions while uncertainty of the stochastic behavior is expressed—as in constraint Markov chains—by (underspecified) stochastic constraints. Besides the influence of all these work, Kim has always been extremely inspiring. This started in 1996 at the conference FTRTFT in Uppsala, when he stimulated us to use Uppaal—at those days in its very early stage of development [30]—to take up the challenge of modeling and verifying Philips’ bounded retransmission protocol [31]. This relationship has continued over the years and has led to several joint EU projects. It has been a great pleasure and enormous honor to work with Kim. This paper is a salute to his 60th birthday.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Katoen, JP., Sher, F. (2017). Modal Stochastic Games. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds) Models, Algorithms, Logics and Tools. Lecture Notes in Computer Science(), vol 10460. Springer, Cham. https://doi.org/10.1007/978-3-319-63121-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-63121-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63120-2
Online ISBN: 978-3-319-63121-9
eBook Packages: Computer ScienceComputer Science (R0)