Skip to main content

lpopt: A Rule Optimization Tool for Answer Set Programming

  • Conference paper
  • First Online:
Logic-Based Program Synthesis and Transformation (LOPSTR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10184))

  • 451 Accesses

Abstract

State-of-the-art answer set programming (ASP) solvers rely on a program called a grounder to convert non-ground programs containing variables into variable-free, propositional programs. The size of this grounding depends heavily on the size of the non-ground rules, and thus, reducing the size of such rules is a promising approach to improve solving performance. To this end, in this paper we announce lpopt, a tool that decomposes large logic programming rules into smaller rules that are easier to handle for current solvers. The tool is specifically tailored to handle the standard syntax of the ASP language (ASP-Core) and makes it easier for users to write efficient and intuitive ASP programs, which would otherwise often require significant hand-tuning by expert ASP engineers. It is based on an idea proposed by Morak and Woltran (2012) that we extend significantly in order to handle the full ASP syntax, including complex constructs like aggregates, weak constraints, and arithmetic expressions. We present the algorithm, the theoretical foundations on how to treat these constructs, as well as an experimental evaluation showing the viability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://potassco.sourceforge.net.

  2. 2.

    https://www.mat.unical.it/aspcomp2014/.

  3. 3.

    http://potassco.sourceforge.net.

References

  1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40564-8_6

    Chapter  Google Scholar 

  2. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive datalog system DLV. In: Datalog Reloaded. Revised Selected Papers, pp. 282–301 (2010)

    Google Scholar 

  3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algeb. Discr. Meth. 8(2), 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bichler, M.: Optimizing non-ground answer set programs via rule decomposition. BSc Thesis, TU Wien (2015). http://dbai.tuwien.ac.at/proj/lpopt

  5. Bichler, M., Morak, M., Woltran, S.: The power of non-ground rules in answer set programming. TPLP 16(5–6), 552–569 (2016)

    MathSciNet  Google Scholar 

  6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Inf. Comput. 208(3), 259–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving advanced argumentation problems with answer-set programming. In: Proceeding of AAAI, pp. 1077–1083 (2017)

    Google Scholar 

  9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  10. Brewka, G., Woltran, S.: GRAPPA: A semantical framework for graph-based argument processing. In: Proceeding of ECAI, pp. 153–158 (2014)

    Google Scholar 

  11. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format v2.03c (2015). https://www.mat.unical.it/aspcomp.2013/ASPStandardization. Accessed 27 Jun 2016

  12. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elkabani, I., Pontelli, E., Son, T.C.: Smodels A — a system for computing answer sets of logic programs with aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 427–431. Springer, Heidelberg (2005). doi:10.1007/11546207_40

    Chapter  Google Scholar 

  14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. ynthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Rafael (2012)

    MATH  Google Scholar 

  15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceeding of ICLP/SLP, pp. 1070–1080 (1988)

    Google Scholar 

  17. Heißenberger, G.: A system for advanced graphical argumentation formalisms. Master’s thesis, TU Wien (2016). www.dbai.tuwien.ac.at/proj/adf/grappavis/

  18. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm. AI, pp. 375–398. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Morak, M., Woltran, S.: Preprocessing of complex non-ground rules in answer set programming. In: Proceeding ICLP, pp. 247–258 (2012)

    Google Scholar 

Download references

Acknowledgments

Funded by the Austrian Science Fund (FWF): Y698, P25607.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Morak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bichler, M., Morak, M., Woltran, S. (2017). lpopt: A Rule Optimization Tool for Answer Set Programming. In: Hermenegildo, M., Lopez-Garcia, P. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2016. Lecture Notes in Computer Science(), vol 10184. Springer, Cham. https://doi.org/10.1007/978-3-319-63139-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63139-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63138-7

  • Online ISBN: 978-3-319-63139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics