Skip to main content

A More Robust Active Contour Model with Group Similarity

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Included in the following conference series:

  • 2998 Accesses

Abstract

Image segmentation based on active contour model has been widely used in recent years. However, in real application, image segmentation results are always leaded to corrupt because of partial missing of target boundaries or some misleading factors. In order to solve the issue, Zhou proposed a model called active contour with group similarity. But Zhou’s model is purely based on global information of image and cannot deal with image segmentation with intensity inhomogeneity. In order to optimize Zhou’s model and make it more robust, we construct a new energy function which combines global feature with local feature of image. The local feature can solve the issue of image segmentation with intensity inhomogeneity. And the global feature can make our model less sensitive to the initial position of the curve or noise. The experiment results have proved that, our method can achieve satisfying segmentation results on image segmentation with intensity inhomogeneity and show less sensitive to the initial position of the curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Li, C., Kao, C.Y., Gore, J.C., et al.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–7. DBLP (2007)

    Google Scholar 

  6. Li, C., Kao, C.Y., Gore, J.C., et al.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  7. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002). doi:10.1007/3-540-47967-8_6

    Chapter  Google Scholar 

  8. Zhou, X., Huang, X., Duncan, J.S., et al.: Active contours with group similarity. pp. 2969–2976 (2013)

    Google Scholar 

  9. Li, C., Xu, C., Gui, C., et al.: Level set evolution without re-initialization: a new variational formulation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 430–436. IEEE Xplore (2005)

    Google Scholar 

  10. Candes, E., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–119 (2012)

    Article  MATH  Google Scholar 

  11. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nesterov, Y.: Gradient methods for minimizing composite objective function (2007)

    Google Scholar 

  13. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, 2000 Proceedings, vol. 1, pp. 316–323. IEEE (2000)

    Google Scholar 

  15. Cootes, T.F., Taylor, C.J., Cooper, D.H., et al.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  16. Tsai, A., Yezzi, A., Wells, W., et al.: Model-based curve evolution technique for image segmentation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-I. IEEE (2001)

    Google Scholar 

  17. Etyngier, P., Segonne, F., Keriven, R.: Shape priors using manifold learning techniques. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  18. He, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. Sig. Process. 92(2), 587–600 (2012)

    Article  Google Scholar 

  19. Riklin-Raviv, T., Kiryati, N., Sochen, N.: Prior-based segmentation by projective registration and level sets. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 204–211. IEEE (2005)

    Google Scholar 

  20. Lv, P., Zhao, Q., Gu, D.: Segmenting similar shapes via weighted group-similarity active contours. In: IEEE International Conference on Image Processing, pp. 4032–4036. IEEE (2015)

    Google Scholar 

  21. Sidi, O., Kaick, O.V., Kleiman, Y., et al.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30(6), 126:1–126:10 (2011)

    Article  Google Scholar 

  22. Srivastava, A., Joshi, S.H., Mio, W., et al.: Statistical shape analysis: clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 590–602 (2005)

    Article  Google Scholar 

  23. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  24. Fazel, M.: Matrix rank minimization with applications. Ph. D. thesis, Stanford University (2002)

    Google Scholar 

  25. Chen, Y., Yue, X., Da Xu, R.Y., Fujita, H.: Region scalable active contour model with global constraint. Knowl. Based Syst. 120, 57–73 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Technology Support Program of China (No. 2015BAF04B00), The Fundamental Research Funds for the central Universities, and the Shanghai Innovation Action Project of Science and Technology (15DZ1101202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhui Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, S., Zhao, X., Liu, X., Chen, Y. (2017). A More Robust Active Contour Model with Group Similarity. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics