Skip to main content

LSLS: A Novel Scaffolding Method Based on Path Extension

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

Abstract

While aiming to determine orientations and orders of fragmented contigs, scaffolding is an essential step of assembly pipelines and can make assembly results more complete. Most existing scaffolding tools adopt the scaffold graph approach. However, constructing an accurate scaffold graph is still a challenge task. Removing potential false relationships is a key to achieve a better scaffolding performance, while most scaffolding approaches neglect the impacts of uneven sequencing depth that may cause more sequencing errors, and finally result in many false relationships. In this paper, we present a new scaffolding method LSLS (Loose-Strict-Loose Scaffolding), which is based on path extension. LSLS uses different strategies to extend paths, which can be more adaptive to different sequencing depths. For the problem of multiple paths, we designed a score function, which is based on the distribution of read pairs, to evaluate the reliability of path candidates and extend them with the paths which have the highest score. Besides, LSLS contains a new gap estimation method, which can estimate gap sizes more precisely. The experiment results on the two standard datasets show that LSLS can get better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voelkerding, K.V., Dames, S.A., Durtschi, J.D.: Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55(4), 641–658 (2009)

    Article  Google Scholar 

  2. Luo, J., Wang, J., Zhang, Z., Wu, F.X., Li, M., Pan, Y.: Epga: de novo assembly using the distributions of reads and insert size. Bioinformatics 31(6), 825–833 (2015)

    Article  Google Scholar 

  3. Gritsenko, A.A., Nijkamp, J.F., Reinders, M.J.T., Ridder, D.D.: Grass: a generic algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics 28(11), 1429 (2012)

    Article  Google Scholar 

  4. Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., Ukkonen, E.: Fast scaffolding with small independent mixed integer programs. Bioinformatics 27(23), 3259–3265 (2011)

    Article  Google Scholar 

  5. Dayarian, A., Michael, T.P., Sengupta, A.M.: Sopra: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinform. 11(1), 345 (2010)

    Article  Google Scholar 

  6. Koren, S., Treangen, T.J., Pop, M.: Bambus 2: scaffolding metagenomes. Bioinformatics 27(21), 2964–2971 (2011)

    Article  Google Scholar 

  7. Donmez, N., Brudno, M.: Scarpa: scaffolding reads with practical algorithms. Bioinformatics 29(4), 428 (2013)

    Article  Google Scholar 

  8. Gao, S., Nagarajan, N., Sung, W.K.: Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J. Comput. Biol. J. Comput. Mol. Cell Biol. 18(11), 1681–1691 (2011)

    Article  MathSciNet  Google Scholar 

  9. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22(3), 549–556 (2012)

    Article  Google Scholar 

  10. Simpson, J.T., Wong, K., Jackman, S.D., et al.: Abyss: a parallel assembler for short read sequence data. Genome Res. 19(6), 1117 (2009)

    Article  Google Scholar 

  11. Mandric, I., Zelikovsky, A.: ScaffMatch: scaffolding algorithm based on maximum weight matching. In: Przytycka, Teresa M. (ed.) RECOMB 2015. LNCS, vol. 9029, pp. 222–223. Springer, Cham (2015). doi:10.1007/978-3-319-16706-0_22

    Google Scholar 

  12. Luo, J., Wang, J., Zhen, Z., Min, L., Wu, F.X.: Boss: a novel scaffolding algorithm based on an optimized scaffold graph. Bioinformatics 33, 169–176 (2016). btw597

    Article  Google Scholar 

  13. Ariyaratne, P.N., Sung, W.K.: Pe-assembler: de novo assembler using short paired-end reads. Bioinformatics 27(2), 167 (2011)

    Article  Google Scholar 

  14. Pop, M., Kosack, D.S., Salzberg, S.L.: Hierarchical scaffolding with bambus. Genome Res. 14(1), 149–159 (2004)

    Article  Google Scholar 

  15. Kent, W.J., Haussler, D.: Assembly of the working draft of the human genome with gigassembler. Genome Res. 11(9), 1541–1548 (2001)

    Article  Google Scholar 

  16. Huson, D.H., Reinert, K., Myers, E.W.: The greedy path-merging algorithm for contig scaffolding. J. ACM 49(5), 603–615 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Min, L., Liao, Z., He, Y., Wang, J., Luo, J., Yi, P.: Isea: iterative seed-extension algorithm for de novo assembly using paired-end information and insert size distribution. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2016)

    Article  Google Scholar 

  18. Hunt, M., et al.: A comprehensive evaluation of assembly scaffolding tools. Genome Biol. 15(3), 1–15 (2014)

    Article  Google Scholar 

  19. Sahlin, K., Vezzi, F., Nystedt, B., Lundeberg, J., Arvestad, L.: Besst - efficient scaffolding of large fragmented assemblies. BMC Bioinform. 15(1), 281 (2014)

    Article  Google Scholar 

  20. Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D., Pirovano, W.: Scaffolding pre-assembled contigs using sspace. Bioinformatics 27(4), 578–579 (2011)

    Article  Google Scholar 

  21. Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K., et al.: Soap2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–1967 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Li or Jianxin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, M. et al. (2017). LSLS: A Novel Scaffolding Method Based on Path Extension. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics