Skip to main content

Computer Vision and EMG-Based Handwriting Analysis for Classification in Parkinson’s Disease

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Abstract

Handwriting analysis represents an important research area in different fields. From forensic science to graphology, the automatic dynamic and static analyses of handwriting tasks allow researchers to attribute the paternity of a signature to a specific person or to infer medical and psychological patients’ conditions. An emerging research field for exploiting handwriting analysis results is the one related to Neurodegenerative Diseases (NDs). Patients suffering from a ND are characterized by an abnormal handwriting activity since they have difficulties in motor coordination and a decline in cognition.

In this paper, we propose an approach for differentiating Parkinson’s disease patients from healthy subjects using a handwriting analysis tool based on a limited number of features extracted by means of both computer vision and ElectroMyoGraphy (EMG) signal-processing techniques and processed using an Artificial Neural Network-based classifier.

Finally, we report and discuss the results of an experimental test conducted with both healthy and Parkinson’s Disease patients using the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamargot, D., Morin, M.-F.: Does handwriting on a tablet screen a effect students graphomotor execution? a comparison between grades two and nine. Hum. Mov. Sci. 44, 32–41 (2015)

    Article  Google Scholar 

  2. Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1385–1392. ACM (2016)

    Google Scholar 

  3. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: 2006 International Joint Conference on Neural Networks IJCNN 2006, pp. 1958–1965. IEEE (2006)

    Google Scholar 

  4. Bevilacqua, V.: Three-dimensional virtual colonoscopy for automatic polyps detection by artificial neural network approach: New tests on an enlarged cohort of polyps. Neurocomputing 116, 62–75 (2013)

    Article  Google Scholar 

  5. Bidet-Ildei, C., Pollak, P., Kandel, S., Fraix, V., Orliaguet, J.-P.: Handwriting in patients with parkinson disease: Effect of l-dopa and stimulation of the subthalamic nucleus on motor anticipation. Hum. Mov. Sci. 30(4), 783–791 (2011)

    Article  Google Scholar 

  6. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  7. Carmeli, E., Patish, H., Coleman, R.: The aging hand. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 58(2), M146–M152 (2003)

    Article  Google Scholar 

  8. Contreras-Vidal, J.L., Teulings, H.-L., Stelmach, G.E.: Micrographia in parkinson’s disease. NeuroReport 6(15), 2089–2092 (1995)

    Article  Google Scholar 

  9. Drotar, P., Mekyska, J., Smekal, Z., Rektorova, I., Masarova, L., Faundez-Zanuy, M.: Prediction potential of different handwriting tasks for diagnosis of parkinson’s. In: 2013 E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2013)

    Google Scholar 

  10. Eichhorn, T., Gasser, T., Mai, N., Marquardt, C., Arnold, G., Schwarz, J., Oertel, W.: Computational analysis of open loop handwriting movements in parkinson’s disease: a rapid method to detect dopamimetic effects. Mov. Disord. 11(3), 289–297 (1996)

    Article  Google Scholar 

  11. Flash, T., Inzelberg, R., Schechtman, E., Korczyn, A.D.: Kinematic analysis of upper limb trajectories in parkinson’s disease. Exp. Neurol. 118(2), 215–226 (1992)

    Article  Google Scholar 

  12. Gordon, A.M.: Task-dependent deficits during object release in parkinson’s disease. Exp. Neurol. 153(2), 287–298 (1998)

    Article  MathSciNet  Google Scholar 

  13. Helsper, E., Teulings, H.-L., Karamat, E., Stelmach, G.E.: Preclinical Parkinson features in optically scanned handwriting. In: Handwriting and Drawing Research: Basic and Applied Issues, pp. 241–250. IOS Press, Amsterdam (1996)

    Google Scholar 

  14. Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V.P., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., Frisoli, A.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015)

    Article  Google Scholar 

  15. Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An EMG-based robotic hand exoskeleton for bilateral training of grasp. In: 2013 World Haptics Conference (WHC), pp. 537–542. IEEE (2013)

    Google Scholar 

  16. Longstaff, M.G., Mahant, P.R., Stacy, M.A., Van Gemmert, A.W., Leis, B.C., Stelmach, G.E.: Discrete and dynamic scaling of the size of continuous graphic movements of parkinsonian patients and elderly controls. J. Neurol. Neurosurg. Psychiatry 74(3), 299–304 (2003)

    Article  Google Scholar 

  17. Margolin, D.I., Wing, A.M.: Agraphia and micrographia: Clinical manifestations of motor programming and performance disorders. Acta Physiol. (Oxf) 54(1), 263–283 (1983)

    Google Scholar 

  18. McLennan, J., Nakano, K., Tyler, H., Schwab, R.: Micrographia in parkinson’s disease. J. Neurol. Sci. 15(2), 141–152 (1972)

    Article  Google Scholar 

  19. Müller, F., Stelmach, G.: Prehension movements in parkinson’s disease. Adv. Psychol. 87, 307–319 (1992)

    Google Scholar 

  20. Nutt, J.G., Lea, E.S., Van Houten, L., Schuff, R.A., Sexton, G.J.: Determinants of tapping speed in normal control subjects and subjects with parkinson’s disease: differing effects of brief and continued practice. Mov. Disord. 15(5), 843–849 (2000)

    Article  Google Scholar 

  21. Nutt, J.G., Wooten, G.F.: Diagnosis and initial management of parkinson’s disease. N. Engl. J. Med. 353(10), 1021–1027 (2005)

    Article  Google Scholar 

  22. Rand, M.K., Stelmach, G.E., Bloedel, J.R.: Movement accuracy constraints in parkinsons disease patients. Neuropsychologia 38(2), 203–212 (2000)

    Article  Google Scholar 

  23. Raudmann, M., Taba, P., Medijainen, K.: Handwriting speed and size in individuals with parkinsons disease compared to healthy controls: the possible effect of cueing. Acta Kinesiologiae Universitatis Tartuensis 20, 40–47 (2014)

    Article  Google Scholar 

  24. Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for parkinsons disease diagnosis. J. Neurol. 260(9), 2357–2361 (2013)

    Article  Google Scholar 

  25. Siebner, H.R., Ceballos-Baumann, A., Standhardt, H., Auer, C., Conrad, B., Alesch, F.: Changes in handwriting resulting from bilateral high-frequency stimulation of the subthalamic nucleus in parkinson’s disease. Mov. Disord. 14(6), 964–971 (1999)

    Article  Google Scholar 

  26. Teulings, H., Contreras-Vidal, J.L., Stelmach, G., Adler, C.H.: Adaptation of handwriting size under distorted visual feedback in patients with parkinson’s disease and elderly and young controls. J. Neurol. Neurosurg. Psychiatry 72(3), 315–324 (2002)

    Article  Google Scholar 

  27. Teulings, H.-L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Hum. Mov. Sci. 10(2), 315–334 (1991)

    Article  Google Scholar 

  28. Tresilian, J.R., Stelmach, G.E., Adler, C.H.: Stability of reach-to-grasp movement patterns in parkinson’s disease. Brain 120(11), 2093–2111 (1997)

    Article  Google Scholar 

  29. Ünlü, A., Brause, R., Krakow, K.: Handwriting analysis for diagnosis and prognosis of parkinson’s disease. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS, vol. 4345, pp. 441–450. Springer, Heidelberg (2006). doi:10.1007/11946465_40

    Chapter  Google Scholar 

  30. Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinsons disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurg. Psychiatry 74(11), 1502–1508 (2003)

    Article  Google Scholar 

  31. Van Gemmert, A., Teulings, H.-L., Contreras-Vidal, J.L., Stelmach, G.: Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia 37(6), 685–694 (1999)

    Article  Google Scholar 

  32. Van Gemmert, A.W., Teulings, H.-L., Stelmach, G.E.: Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn. 47(3), 504–512 (2001)

    Article  Google Scholar 

  33. Wang, G., Lochovsky, F.H.: Feature selection with conditional mutual information maximin in text categorization. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 342–349. ACM (2004)

    Google Scholar 

  34. Wann, J., Nimmo-Smith, I.: The control of pen pressure in handwriting: A subtle point. Hum. Mov. Sci. 10(2), 223–246 (1991)

    Article  Google Scholar 

  35. Zhi, N., Jaeger, B., Gouldstone, A., Sipahi, R., Frank, S.: Toward monitoring parkinsons through analysis of static handwriting samples: A quantitative analytical framework. IEEE J. Biomed. Health Inform. 21(2), 488–495 (2016)

    Google Scholar 

Download references

Acknowledgments

This work has been funded from the FutureInResearch program of the Regione Puglia - project n. JTFWZV0 ABIOSAN - Advanced BIOmetric analysiS Against Neuromuscular disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Loconsole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Loconsole, C. et al. (2017). Computer Vision and EMG-Based Handwriting Analysis for Classification in Parkinson’s Disease. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics