Abstract
In most of classic plant identification methods a dichotomous or multi-access key is used to compare characteristics of leaves. Some questions about if the analyzed leaves are lobed, unlobed, simple or compound need to be answered to identify plants successfully. However, very little attention has been paid to make an automatic distinction of leaves using such features. In this paper we first explore if incorporating prior knowledge about leaves (categorizing between lobed simple leaves, and the unlobed simple ones) has an effect on the performance of six classification methods. According to the results of experiments with more than 1,900 images of leaves from Flavia data set, we found that it is statically significant the relationship between such categorization and the improvement of the performances of the classifiers tested. Therefore, we propose two novel methods to automatically differentiate between lobed simple leaves, and the unlobed simple ones. The proposals are invariant to rotation, and achieve correct prediction rates greater than 98%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pahikkala, T., Kari, K., Mattila, H.: Classification of plant species from images of overlapping leaves. Comput. Electron. Agric. 118, 186–192 (2015). doi:10.1016/j.compag.2015.09.003
Jamil, N., Hussin, N.A.C., Nordin, S., Awang, K.: Automatic plant identification: is shape the key feature? Procedia Comput. Sci. 76, 436–442 (2015). doi:10.1016/j.procs.2015.12.287
Aakif, A., Khan, M.F.: Automatic classification of plants based on their leaves. Biosyst. Eng. 139, 66–75 (2015). doi:10.1016/j.biosystemseng.2015.08.003
Belongie, S., Malik, J.: Matching with shape contexts. In: IEEE Work on Proceedings of the Content-Based Access Image Video Libraries, pp. 20–26 (2000)
Zhi, Z.-D., Hu, R.-X., Wang, X.-F.: A new weighted ARC-SC approach for leaf image recognition. In: Huang, D.-S., Ma, J., Jo, K.-H., Gromiha, M.M. (eds.) ICIC 2012. LNCS, vol. 7390, pp. 503–509. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31576-3_64
Hu, R., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21, 4667–4672 (2012)
Gwo, C.Y., Wei, C.H., Li, Y.: Rotary matching of edge features for leaf recognition. Comput. Electron. Agric. 91, 124–134 (2013). doi:10.1016/j.compag.2012.12.005
Hajjdiab, H., Al Maskari, I.: Plant species recognition using leaf contours. In: 2011 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 306–309 (2011)
Shen, Y., Zhou, C., Lin, K.: Leaf image retrieval using a shape based method. In: Li, D., Wang, B. (eds.) AIAI 2005. ITIFIP, vol. 187, pp. 711–719. Springer, Boston (2005). doi:10.1007/0-387-29295-0_77
Kala, J.R., Viriri, S., Moodley, D.: Sinuosity coefficients for leaf shape characterisation. In: Pillay, N., Engelbrecht, A.P., Abraham, A., du Plessis, M.C., Snášel, V., Muda, A.K. (eds.) Advances in Nature and Biologically Inspired Computing. AISC, vol. 419, pp. 141–150. Springer, Cham (2016). doi:10.1007/978-3-319-27400-3_13
Beghin, T., Cope, J.S., Remagnino, P., Barman, S.: Shape and texture based plant leaf classification. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6475, pp. 345–353. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17691-3_32
Chaki, J., Parekh, R., Bhattacharya, S.: Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recogn. Lett. 58, 61–68 (2015). doi:10.1016/j.patrec.2015.02.010
Tzionas, P., Papadakis, S.E., Manolakis, D.: Plant leaves classification based on morphological features and a fuzzy surface selection technique. In: Fifth International Conference on Technology and Automation, Thessaloniki, Greece, pp. 365–370 (2005)
de M. Sá Junior, J.J., Backes, A.R., Cortez, P.C.: Plant leaf classification using color on a gravitational approach. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 258–265. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40246-3_32
McCarthy, C.L., Hancock, N.H., Raine, S.R.: Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intell. Serv. Robot. 3, 209–217 (2010). doi:10.1007/s11370-010-0075-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
López-Chau, A., Rojas-Hernández, R., Lamont, F.G., Trujillo-Mora, V., Rodriguez-Mazahua, L., Cervantes, J. (2017). Leaf Categorization Methods for Plant Identification. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-63315-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63314-5
Online ISBN: 978-3-319-63315-2
eBook Packages: Computer ScienceComputer Science (R0)