Skip to main content

Leaf Categorization Methods for Plant Identification

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Abstract

In most of classic plant identification methods a dichotomous or multi-access key is used to compare characteristics of leaves. Some questions about if the analyzed leaves are lobed, unlobed, simple or compound need to be answered to identify plants successfully. However, very little attention has been paid to make an automatic distinction of leaves using such features. In this paper we first explore if incorporating prior knowledge about leaves (categorizing between lobed simple leaves, and the unlobed simple ones) has an effect on the performance of six classification methods. According to the results of experiments with more than 1,900 images of leaves from Flavia data set, we found that it is statically significant the relationship between such categorization and the improvement of the performances of the classifiers tested. Therefore, we propose two novel methods to automatically differentiate between lobed simple leaves, and the unlobed simple ones. The proposals are invariant to rotation, and achieve correct prediction rates greater than 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pahikkala, T., Kari, K., Mattila, H.: Classification of plant species from images of overlapping leaves. Comput. Electron. Agric. 118, 186–192 (2015). doi:10.1016/j.compag.2015.09.003

    Article  Google Scholar 

  2. Jamil, N., Hussin, N.A.C., Nordin, S., Awang, K.: Automatic plant identification: is shape the key feature? Procedia Comput. Sci. 76, 436–442 (2015). doi:10.1016/j.procs.2015.12.287

    Article  Google Scholar 

  3. Aakif, A., Khan, M.F.: Automatic classification of plants based on their leaves. Biosyst. Eng. 139, 66–75 (2015). doi:10.1016/j.biosystemseng.2015.08.003

    Article  Google Scholar 

  4. Belongie, S., Malik, J.: Matching with shape contexts. In: IEEE Work on Proceedings of the Content-Based Access Image Video Libraries, pp. 20–26 (2000)

    Google Scholar 

  5. Zhi, Z.-D., Hu, R.-X., Wang, X.-F.: A new weighted ARC-SC approach for leaf image recognition. In: Huang, D.-S., Ma, J., Jo, K.-H., Gromiha, M.M. (eds.) ICIC 2012. LNCS, vol. 7390, pp. 503–509. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31576-3_64

    Chapter  Google Scholar 

  6. Hu, R., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21, 4667–4672 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gwo, C.Y., Wei, C.H., Li, Y.: Rotary matching of edge features for leaf recognition. Comput. Electron. Agric. 91, 124–134 (2013). doi:10.1016/j.compag.2012.12.005

    Article  Google Scholar 

  8. Hajjdiab, H., Al Maskari, I.: Plant species recognition using leaf contours. In: 2011 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 306–309 (2011)

    Google Scholar 

  9. Shen, Y., Zhou, C., Lin, K.: Leaf image retrieval using a shape based method. In: Li, D., Wang, B. (eds.) AIAI 2005. ITIFIP, vol. 187, pp. 711–719. Springer, Boston (2005). doi:10.1007/0-387-29295-0_77

    Chapter  Google Scholar 

  10. Kala, J.R., Viriri, S., Moodley, D.: Sinuosity coefficients for leaf shape characterisation. In: Pillay, N., Engelbrecht, A.P., Abraham, A., du Plessis, M.C., Snášel, V., Muda, A.K. (eds.) Advances in Nature and Biologically Inspired Computing. AISC, vol. 419, pp. 141–150. Springer, Cham (2016). doi:10.1007/978-3-319-27400-3_13

    Chapter  Google Scholar 

  11. Beghin, T., Cope, J.S., Remagnino, P., Barman, S.: Shape and texture based plant leaf classification. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6475, pp. 345–353. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17691-3_32

    Chapter  Google Scholar 

  12. Chaki, J., Parekh, R., Bhattacharya, S.: Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recogn. Lett. 58, 61–68 (2015). doi:10.1016/j.patrec.2015.02.010

    Article  Google Scholar 

  13. Tzionas, P., Papadakis, S.E., Manolakis, D.: Plant leaves classification based on morphological features and a fuzzy surface selection technique. In: Fifth International Conference on Technology and Automation, Thessaloniki, Greece, pp. 365–370 (2005)

    Google Scholar 

  14. de M. Sá Junior, J.J., Backes, A.R., Cortez, P.C.: Plant leaf classification using color on a gravitational approach. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 258–265. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40246-3_32

    Chapter  Google Scholar 

  15. McCarthy, C.L., Hancock, N.H., Raine, S.R.: Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intell. Serv. Robot. 3, 209–217 (2010). doi:10.1007/s11370-010-0075-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asdrúbal López-Chau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

López-Chau, A., Rojas-Hernández, R., Lamont, F.G., Trujillo-Mora, V., Rodriguez-Mazahua, L., Cervantes, J. (2017). Leaf Categorization Methods for Plant Identification. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics