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Abstract. A quantified Boolean formula (QBF) is a propositional for-
mula extended with universal and existential quantification over propo-
sitions. There are two methodologies in CEGAR based QBF solving
techniques, one that is based on a refinement loop that builds partial
expansions and a more recent one that is based on the communication of
satisfied clauses. Despite their algorithmic similarity, their performance
characteristics in experimental evaluations are very different and in many
cases orthogonal. We compare those CEGAR approaches using proof the-
ory developed around QBF solving and present a unified calculus that
combines the strength of both approaches. Lastly, we implement the new
calculus and confirm experimentally that the theoretical improvements
lead to improved performance.

1 Introduction

Efficient solving techniques for Boolean theories are an integral part of modern
verification and synthesis methods. Especially in synthesis, the amount of choice
in the solution space leads to propositional problems of enormous size. Quantified
Boolean formulas (QBFs) have repeatedly been considered as a candidate theory
for synthesis approaches [6,7,10–12,24] and recent advances in QBF solvers give
rise to hope that QBF may help to increase the scalability of those approaches.

Solving quantified Boolean formulas (QBF) using partial expansions in a
counterexample guided abstraction and refinement (CEGAR) loop [16] has proven
to be very successful. From its introduction, the corresponding solver RAReQS
won several QBF competitions. In recent work, a different kind of CEGAR al-
gorithms have been proposed [18, 25], implemented in the solvers Qesto and
CAQE. All those CEGAR approaches share algorithmic similarities like working
recursively over the structure of the quantifier prefix and using SAT solver to
enumerate candidate solutions. However, instead of using partial expansions of
the QBF as RAReQS does, newer approaches base their refinements on whether
a set of clauses is satisfied or not. Despite those algorithmic similarities, the per-
formance characteristics of the resulting solver in experimental evaluations are
very different and in many cases orthogonal: While RAReQS tends to perform
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best on instances with a low number of quantifier alternations, Qesto and CAQE
have an advantage in instances with many alternations [25].

Proof theory has been repeatedly used to improve the understanding of differ-
ent solving techniques. For example, the proof calculus ∀Exp+Res [17] has been
developed to characterize aspects of expansion-based solving. In this paper, we
introduce a new calculus ∀Red+Res that corresponds to the clausal-based CE-
GAR approaches [18, 25]. The levelized nature of those algorithms are reflected
by the rules of this calculus, universal reduction and propositional resolution,
which are applied to blocks of quantifiers. We show that this calculus is in-
herently different to ∀Exp+Res explaining the empirical performance results. In
detail, we show that ∀Red+Res polynomial simulates level-ordered Q-resolution.
We also discuss an extension to ∀Red+Res that was already proposed as solv-
ing optimizations [25] and show that this extension makes the resulting calculus
exponential more concise.

Further, we integrate the ∀Exp+Res calculus as a rule that can be used within
the ∀Red+Res calculus, leading to a unified proof calculus for all current CEGAR
approaches. We show that the unified calculus is exponential stronger than both
∀Exp+Res and ∀Red+Res, as well as just applying both simultaneously. This
unified calculus serves as a base for implementing an expansion refinement in
the QBF solver CAQE. On standard benchmark sets, the combined approach
leads to a significant empirical improvement over the previous implementation.

2 Preliminaries

2.1 Quantified Boolean Formulas

We consider quantified Boolean formulas in prenex conjunctive normal form
(PCNF), that is a formula consisting of a linear and consecutive quantifier prefix
as well as a propositional matrix. A matrix is a set of clauses, and a clause is a
disjunctive combination of literals l, that is either a variable or its negation.

Given a clause C = (l1∨l2∨. . .∨ln), we use set notation interchangeably, that
is C is also represented by the set {l1, l2, . . . , ln}. Furthermore, we use standard
set operations, such as union and intersection, to work with clauses.

For readability, we lift the quantification over variables to the quantification
over sets of variables and denote a maximal consecutive block of quantifiers of
the same type ∀x1.∀x2. · · · ∀xn. ϕ by ∀X.ϕ and ∃x1.∃x2. · · · ∃xn. ϕ by ∃X.ϕ,
accordingly, where X = {x1, . . . , xn}.

Given a set of variables X, an assignment of X is a function α : X → B that
maps each variable x ∈ X to either true (>) or false (⊥). When the domain of α
is not clear from context, we write αX . We use the instantiation of a QBF Φ
by assignment α, written Φ[α] which removes quantification over variables in
dom(α) and replaces occurrences of x ∈ dom(α) by α(x). We write α � ϕ if the
assignment α satisfies a propositional formula ϕ, i.e., ϕ[α] ≡ >.
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C ∪ C′

C ∪ {l} C′ ∪ {l}

(a) Resolution rule

⊥

c1 c1

c1 ∨ c2 c2

(b) Resolution proof for formula
(c1)(c2)(c1 ∨ c2)

Fig. 1: Visualization of the resolution rule as a graph.

2.2 Resolution

Propositional resolution is a well-known method for refuting propositional for-
mulas in conjunctive normal form (CNF). The resolution rule allows to merge
two clauses that contain the same variable, but in opposite signs.

C ∪ {l} C ′ ∪ {l}
C ∪ C ′

res

A resolution proof π is a series of applications of the resolution rule. A propo-
sitional formula is unsatisfiable if there is a resolution proof that derives the
empty clause. We visualize resolution proofs by a graph where the nodes with
indegree 0 are called the leaves and the unique node with outdegree 0 is called
the root. We depict the graph representation of a resolution proof in Fig. 1(b).
The size of a resolution proof is the number of nodes in the graph.

2.3 Proof Systems

We consider proof systems that are able to refute quantified Boolean formulas.
To enable comparison between proof systems, one uses the concept of polynomial
simulation. A proof system P polynomially simulates (p-simulates) P ′ if there is
a polynomial p such that for every number n and every formula Φ it holds that
if there is a proof of Φ in P ′ of size n, then there is a proof of Φ in P whose
size is less than p(n). We call P and P ′ polynomial equivalent, if P ′ additionally
p-simulates P .

A refutation based calculus (such as resolution) is regarded as a proof system
because it can refute the negation of a formula.

Figure 2 gives an overview over the proof systems introduced in this paper
and their relation. An edge P → P ′ means that P p-simulates P ′ (transitive
edges are omitted). A dashed line indicates incomparability results.
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∀Red+∀Exp+Res
strengthen

∀Red+∀Exp+Res

∀Exp+Res

∀Red+Res
strengthen

∀Red+Res
level-ordered
Q-resolution

Q-resolution

tree-like
Q-resolution

Theorem 6

Theorem 7 Theorem 4

Theorem 2

[17]

Theorem 10

Theorem 9

[23][23], Theorem 2

Fig. 2: Overview of the proof systems and their relations. Solid arrows indicate
p-simulation relation. Dashed lines indicate incomparability results. The gray
boxes are the ones introduced in this paper.

3 Proof Calculi

Given a PCNF formula QX1 . . . QXn.
∧

1≤i≤m Ci. We define a function lit(i, k)
that returns the literals of clause Ci that are bound at quantifier level k (1 ≤ k ≤
n). Further, we generalize this definition to lit(i, > k) and lit(i, < k) that return
the literals bound after (before) level k. We define lit(i, 0) = lit(i, n+ 1) = ∅ for
every 1 ≤ i ≤ m. We use C to denote a set of clauses and Qk ∈ {∃,∀} to denote
the quantification type of level k.

3.1 A Proof System for Clausal Abstractions

We start by defining the object on which our proof system ∀Red+Res is based
on. A proof object Pk consists of a set of indices P where an index i ∈ P
represents the i-th clause in the original matrix and k denotes the k-th level of
the quantifier hierarchy. We define an operation lit(Pk) =

⋃
i∈P lit(i, k), that

gives access to the literals of clauses contained in Pk. The leaves in our proof
system are singleton sets {i}z where z is the maximum quantification level of all
literals in clause Ci. The root of a refutation proof is the proof object P0 that
represents the empty set, i.e., lit(P0) = ∅.

The rules of the proof system is given in Fig. 3. It consists of three rules, an
axiom rule (init) that generates leaves, a resolution rule (res), and a universal
reduction rule (∀red). The latter two rules enable to transform a premise that
is related to quantifier level k into a conclusion that is related to quantifier
level k − 1. The universal reduction rule and the resolution rule are used for
universal and existential quantifier blocks, respectively.
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Pk
1 · · · Pk

j π(⋃
i∈{1,...,j} Pi

)k−1
res

Qk = ∃
π is a resolution refutation proof for

∧
1≤i≤j lit(P

k
i )

Pk

Pk−1
∀red Qk = ∀

∀l ∈ lit(Pk). l /∈ lit(Pk)

{i}k
init 1 ≤ i ≤ m

lit(i, > k) = ∅

Fig. 3: The rules of the ∀Red+Res calculus.

Resolution rule. There is a close connection between (res) and the propositional
resolution as (res) merges a number of proof objects Pki of level k into a single
proof object of level k − 1. It does so by using a resolution proof for a propo-
sitional formula that is constructed from the premises Pki . This propositional
formula

∧
1≤i≤j lit(Pki ) contains only literals of level k. Intuitively, this rule can

be interpreted as follows: a resolution proof over those clauses rules out any pos-
sible existential assignment at quantifier level k, thus, one of those clauses has
to be satisfied at an earlier level.

Universal reduction rule. In contrast to (res), (∀red) works on single proof ob-
jects. It can be applied if level k is universal and the premise does not encode a
universal tautology, i.e., for every literal l ∈ lit(Pk), the negated literal l is not
contained in lit(Pk).

Graph representation. A proof in the ∀Red+Res calculus can be represented as
a directed acyclic graph (DAG). The nodes in the DAG are proof objects Pk
and the edges represent applications of (res) and (∀red). The rule (res) is repre-
sented by a hyper-edge that is labeled with the propositional resolution proof π.
Edges representing the universal reduction can thus remain unlabeled without
introducing ambiguity. The size of a ∀Red+Res proof is the number of nodes in
the graph together with the number of inner (non-leaf, non-root) nodes of the
containing propositional resolution proofs.

A refutation in the ∀Red+Res calculus is a proof that derives a proof object
P0 at level 0. A proof for some Pk is a ∀Red+Res proof with root Pk. Thus, a
proof for Pk can be also viewed as a refutation for the formula QXk+1 . . . QXn.∧
i∈P lit(i, > k) starting with quantifier level k + 1 and containing clauses rep-

resented by P.

Example 1. Consider the following QBF

∃e1︸︷︷︸
1

. ∀u1︸︷︷︸
2

.∃c1, c2︸ ︷︷ ︸
3

. (e1 ∨ c1︸ ︷︷ ︸
C1

)(u1 ∨ c1︸ ︷︷ ︸
C2

)(e1 ∨ c2︸ ︷︷ ︸
C3

)(u1 ∨ c2︸ ︷︷ ︸
C4

)(c1 ∨ c2︸ ︷︷ ︸
C5

) . (1)
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({1, 2, 3, 4, 5}0,⊥)

π3

({1, 4, 5}1, e1) ({2, 3, 5}1, e1)

({1, 4, 5}2, u1) ({2, 3, 5}2, u1)

π1 π2

({1}3, c1) ({4}3, c2) ({5}3, c1 ∨ c2) ({3}3, c2)({2}3, c1)

Fig. 4: A ∀Red+Res refutation for formula (1).

The refutation in the ∀Red+Res calculus is given in Fig. 4. In the nodes,
we represent the proof objects Pk in the first component and the represented
clause in the second component. The proof follows the structure of the quantifier
prefix, i.e., it needs four levels to derive a refutation. The resolution proof π1 for
propositional formula

lit({1}3) ∧ lit({4}3) ∧ lit({5}3) ≡ (c1)(c2)(c1 ∨ c2)

is depicted in Fig. 1(b).

In the following, we give a formal correctness argument and compare our
calculus to established proof systems. A QBF proof system is sound if deriving
a proof implies that the QBF is false and it is refutational complete if every false
QBF has a proof.

Theorem 1. ∀Red+Res is sound and refutational complete for QBF.

Proof. The completeness proof is carried out by induction over the quantifier
prefix.

Induction base. Let ∃X.ϕ be a false QBF and ϕ be propositional. Then
(res) derives some P0 because resolution is complete for propositional formulas.
Let ∀X.ϕ be a false QBF and ϕ be propositional. Picking an arbitrary (non-

tautological) clause Ci and applying (∀red) leads to {i}0.
Induction step. Let ∃X.Φ be a false QBF, i.e., for all assignments αX the

QBF Φ[αX ] is false. Hence, by induction hypothesis, there exists a ∀Red+Res
proof for every Φ[αX ]. We transform those proofs in a way that they can be used
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to build a proof for Φ. Let P be a proof of Φ[αX ]. P has a distinct root node
(representing the empty set), that was derived using (∀red) as Φ[αX ] starts with
a universal quantifier. To embed P in Φ, we increment every level in P by one,
as Φ has one additional (existential) quantifier level. Then, instead of deriving
the empty set, the former root node derives a proof object of the form P1. Let N
be the set of those former root nodes. By construction, there exists a resolution
proof π such that the empty set can be derived by (res) using N (or a subset
thereof). Assuming otherwise leads to the contradiction that some Φ[αX ] is true.

Let ∀X.Φ be a false QBF, i.e., there is an assignment αX such that the QBF
Φ[αX ] is false. Hence, by induction hypothesis, there exists a ∀Red+Res proof
for Φ[αX ]. Applying (∀red) using αX is a ∀Red+Res proof for Φ.

For soundness it is enough to show that one cannot derive a clause using
this calculus that changes the satisfiability. Let Φ = QX1 . . . QXn.

∧
1≤i≤m Ci

be an arbitrary QBF. For every level k and every Pk generated by the applica-
tion of the ∀Red+Res calculus, it holds that Φ and QX1 . . . QXn.

∧
1≤i≤m Ci ∧

(
∨
i∈P

∨
l∈lit(i,≤k) l) are equisatisfiable. Assume otherwise, then either (∀red) or

(res) have derived a Pk that would make Φ false. Again, by induction, one can
show that if (∀red) derived a Pk that makes Φ false, the original premise Pk+1

would have made Φ false; likewise, if (res) derived a Pk that makes Φ false, the
conjunction of the premises have made Φ false. ut

Comparison to Q-resolution calculus. Q-resolution [19] is an extension of the
(propositional) resolution rule to handle universal quantification. The universal
reduction rule allows the removal of universal literal u from a clause C if no
existential literal l ∈ C depends on u. There are also additional rules on when the
resolution rule can be applied, i.e., it is not allowed to produce tautology clauses
using the resolution rule. The definitions of Q-resolution proof and refutation
are analogous to the propositional case.

There are two restricted classes of Q-resolution that are commonly consid-
ered, that is level-ordered and tree-like Q-resolution. A Q-resolution proof is
level-ordered if resolution of an existential literal l at level k happens before
every other existential literal with level < k. A Q-resolution proof is tree-like if
the graph representing the proof has a tree shape.

As a first result, we show that ∀Red+Res is polynomially equivalent to level-
ordered Q-resolution, i.e., a proof in our calculus can be polynomially simulated
in level-ordered Q-resolution and vice versa. While this is straightforward from
the definitions of both calculi, this is much less obvious if one looks at the
underlying algorithms of the CEGAR approaches [18,25] and QCDCL [27].

Theorem 2. ∀Red+Res and level-ordered Q-resolution are p-sim. equivalent.

Proof. A ∀Red+Res proof can be transformed into a Q-resolution proof by re-
placing every node Pk by the clause (

∨
i∈P

∨
l∈lit(i,≤k) l) and by replacing the

hyper-edge labeled with π by a graph representing the applications of the reso-
lution rule. Similarly, a level-ordered Q-resolution proof can be transformed into
a ∀Red+Res proof by a step-wise transformation from leaves to the root. This

7



way, one can track the clauses needed for constructing the proof objects Pk at
every level k. ut

Despite being equally powerful, the differences are important and enable the
expansion based extension that we will introduce in the next section. One dif-
ference is that our calculus only reasons about literals of one quantifier level,
which allows us to use plain resolution without any changes (as are needed in
Q-resolution). Further, the proof rules capture the fact that only proof obliga-
tions are communicated between the quantifier levels of the QBF. An immediate
consequence is that every refutation in the proof system is DAG-like and has
exactly depth k + 1.

Since the level-ordering constraint imposes an order on the resolution, the size
of the refutation proof may be exponentially larger for some formulas [14]. Hence,
also ∀Red+Res is in general exponentially weaker than unrestrictedQ-resolution.
In practice, and already noted by Janota and Marques-Silva [17], solvers that
are based on Q-resolution proofs produce level-ordered Q-resolution.

In the initial version of CAQE [25] an optimization that can generate new
resolvents at level k without recursion into deeper levels was described. We model
this optimization as a new rule extending the ∀Red+Res calculus and show that
this rule leads to an exponential separation.

Strong UNSAT Rule. In the implementation of CAQE, we used an optimiza-
tion which we called strong UNSAT refinement [25], that allowed the solver to
strengthen a certain type of refinements. The basic idea behind this optimiza-
tion is that if the solver determines that, at an existential level k, a certain set
of clauses C cannot be satisfied at the same time, then every alternative set of
clauses C′, that is equivalent with respect to the literals in levels > k, cannot
be satisfied as well. We introduce the following proof rule that formalizes this
intuition. We extend proof objects Pk such that they can additionally contain
fresh literals, i.e., literals that were not part of the original QBF. Those literals
are treated as they were bound at level k, i.e., they are contained in lit(Pk) and
can thus be used in the premise of the rule (res), but are not contained in the
conclusion Pk−1.

(P ∪ {i})k

({a} ∪ P)k {a, j1}k · · · {a, jn}k
strengthen

Qk = ∃,
lit(j,> k) ⊆ lit(i, > k)
for all j ∈ {j1, . . . , jn},
a fresh var.

Theorem 3. The strengthening rule is sound.

Proof. In a resolution proof at level k, one can derive the proof objects (P ∪
{j})k for j ∈ {j1, . . . , jn} using the conclusion of the strengthening rule. As-
sume we have a proof for (P ∪ {i})k (premise), then the quantified formula
∀Xk+1 . . . QXn.

∧
i∗∈P lit(i∗, > k) ∧ lit(i, > k) is false. Thus, the QBF with

the same quantifier prefix and matrix, extended by some clause lit(j,> k) for
j ∈ {j1, . . . , jn}, is still false. Since every Cj subsumes Ci with respect to quan-
tifier level greater than k (lit(j,> k) ⊆ lit(i, > k)), the clause lit(i, > k) can

8



be eliminated without changing satisfiability. Thus, the resulting quantified for-
mula ∀Xk+1 . . . QXn.

∧
i∗∈P lit(i∗, > k) ∧ lit(j,> k) is false and there exists a

∀Red+Res proof for (P ∪ {j})k. ut

Theorem 4. The proof system without strengthening rule does not p-simulate
the proof system with strengthening rule.

Proof. We use the family of formulas CRn that was used to show that level-
ordered Q-resolution cannot p-simulate ∀Exp+Res [17]. We show that CRn has
a polynomial refutation in the ∀Red+Res calculus with strengthening rule, but
has only exponential refutations without it. The latter follows from Theorem 2
and the results by Janota and Marques-Silva [17].

The formula CRn has the quantifier prefix ∃x11 . . . xnn∀z∃a1 . . . anb1 . . . bn
and the matrix is given by( ∨

i∈1..n
ai

)
∧

( ∨
i∈1..n

bi

)
∧

∧
i,j∈1..n

(xij ∨ z ∨ ai)︸ ︷︷ ︸
Cij

∧ (xij ∨ z ∨ bj)︸ ︷︷ ︸
Cij

(2)

One can interpret the constraints as selecting rows and columns in a matrix
where i selects the row and j selects the column, e.g., for n = 3 it can be
visualized as follows:

x11 ∨ z ∨ a1 x11 ∨ z ∨ b1 x12 ∨ z ∨ a1 x12 ∨ z ∨ b2 x13 ∨ z ∨ a1 x13 ∨ z ∨ b3
x21 ∨ z ∨ a2 x21 ∨ z ∨ b1 x22 ∨ z ∨ a2 x22 ∨ z ∨ b2 x23 ∨ z ∨ a2 x23 ∨ z ∨ b3
x31 ∨ z ∨ a3 x31 ∨ z ∨ b1 x32 ∨ z ∨ a3 x32 ∨ z ∨ b2 x33 ∨ z ∨ a3 x33 ∨ z ∨ b3

Assume z → 0, then we derive the proof object P1 = {i1 | i ∈ 1..n}1 (lit(P1) =∨
i∈1..n xi1) by applying the resolution and reduction rule. Likewise, for z → 1,

we derive the proof object P1
0 = {1j | j ∈ 1..n}1 (lit(P1

0 ) =
∨
j∈1..n x1j). Apply-

ing the strengthening rule on P1
0 results in P1

1 = ({c1} ∪ {1j | j ∈ 2..n})1 and

{c1, 11}1, {c1, 21}1, . . . , {c1, n1}1 where c1 is a fresh variable. Further n−1 appli-

cations of the strengthening rule starting on P1
1 lead to P1

n = {cj | j ∈ 1..n}1 and

the proof objects {cj , ij | i, j ∈ 1..n}1, where cj are fresh variables, as all clauses
in a column are equivalent with respect to the inner quantifiers (contain z ∨ bj).

Using P1 and {c1, 11}1, {c1, 21}1, . . . , {c1, n1}1 from the first strengthening
application, we derive the singleton set {c1} using n resolution steps (lit(P1) =∨
i∈1..n xi1 and lit({c1, i1}

1
) = {c1, xi1}). Analogously, one derives the singletons

{c2} . . . {cn} and together with P1
n = {cj | j ∈ 1..n} the empty set is derived.

Thus, there exists a polyonomial resolution proof leading to a proof object P0

and the size of the overall proof is polynomial, too. ut

We note that despite being stronger than plain ∀Red+Res, the extended
calculus is still incomparable to ∀Exp+Res.

Corollary 1. ∀Red+Res with strengthening rule does not p-simulate ∀Exp+Res.

9



Proof. We use a modification of formula CRn (2), which we call CR′n in the
following. The single universal variable z is replaced by a number of variables
zij for every pair i, j ∈ 1..N . It follows that the strengthening rule is never
applicable and hence, the proof system is as strong as level-ordered Q-resolution
which has an exponential refutation of CRn while ∀Exp+Res has a polynomial
refutation since the expansion tree has still only two branches [17]. ut

When compared to Q-resolution, the strengthening rule can be interpreted
as a step towards breaking the level-ordered constraint inherent to ∀Red+Res.
The calculus, however, is not as strong as Q-resolution.

Corollary 2. ∀Red+Res with strengthening rule does not p-sim. Q-resolution.

Proof. The formula CR′n from the previous proof has a polynomial (tree-like)
Q-resolution proof. The proof for CRn given by Mahajan and Shukla [23] can
be modified for CR′n. ut

Both results follow from the fact that the strengthening rule as presented is
not applicable to the formula CR′n. Where in CRn, the clauses Cij are equal

with respect to the inner quantifier when j is fixed (z ∨ bj), in CR′n they are all
different (zij∨bj). This difference is only due to the universal variables zij . Thus,
we propose a stronger version of the strengthening rule that does the subset check
only on the existential variables. For the universal literals, one additionally has
to make sure that no resolvent produces a tautology (as it is the case in CR′n).
We leave the formalization to future work.

3.2 Expansion

The levelized nature of the proof system allows us to introduce additional rules
that can reason about quantified subformulas. In the following, we introduce
such a rule that allows us to use the ∀Exp+Res calculus [17] within a ∀Red+Res
proof.

We start by giving necessary notations used to define ∀Exp+Res. We refer
the reader to [17] for further information.

Definition 1 (adapted from [17]).

– A ∀-expansion tree for QBF Φ with u universal quantifier blocks is a rooted
tree T such that every path p0

α1−→ p1 · · ·
αu−−→ pu in T from the root p0 to

some leaf pu has exactly u edges and each edge pi−1
αi−→ pi is labeled with a

total assignment αu to the universal variables at universal level u. Each path
in T is uniquely defined by its labeling.

– Let T be a ∀-expansion tree and P = p0
α1−→ p1 · · ·

αu−−→ pu be a path from the
root p0 to some leaf pu.
1. For an existential variable x we define expand-var(P, x) = xα where xα

is a fresh variable and α is the universal assignment of the dependencies
of x.

10



2. For a propositional formula ϕ define expand(P,ϕ) as instantiating ϕ with
α1, . . . , αu and replacing every existential variable x by expand-var(P, x).

3. Define expand(T , Φ) as the conjunction of all expand(P,ϕ) for each root-
to-leaf P in T .

In contrast to previous work, we allow to use the expansion rule on quantified
subformulas of Φ additionally to applying it to Φ directly. By C≥k we denote a
set of clauses that only contain literals bound at level ≥ k.

T C≥k π

Pk−1
∀exp-res Qk = ∃, π is a resolution refutation of the expansion

formula expand(T ,∃Xk.∀Xk+1 . . . ∃Xm. C≥k)

Pk−1 = {i | Ci ∈ C}k−1

The rule states that if there is a universal expansion of the quantified Boolean
formula ∃Xk.∀Xk+1 . . . ∃Xm. C≥k and a resolution refutation π for this expan-
sion, then there is no existential assignment that satisfies clauses C from level k.
The size of the expansion rule is the sum of the size of the expansion tree and
resolution proof [17].

Example 2. We demonstrate the interplay between (∀exp-res) and the ∀Red+Res
calculus on the following formula

1︷︸︸︷
∃e1 .

2︷︸︸︷
∀u1 .

3︷ ︸︸ ︷
∃c1, c2.

4︷︸︸︷
∀a .

5︷ ︸︸ ︷
∃b.∃x.

6︷︸︸︷
∀z .

7︷︸︸︷
∃t .

(e1 ∨ c1)︸ ︷︷ ︸
1

(u1 ∨ c1)︸ ︷︷ ︸
2

(e1 ∨ c2)︸ ︷︷ ︸
3

(u1 ∨ c2)︸ ︷︷ ︸
4

(c1 ∨ c2 ∨ b ∨ a)︸ ︷︷ ︸
5

(z ∨ t ∨ b)︸ ︷︷ ︸
6

(z ∨ t)︸ ︷︷ ︸
7

(x ∨ t)︸ ︷︷ ︸
8

(x ∨ t)︸ ︷︷ ︸
9

To apply (∀exp-res), we use the clauses 5–9 from quantifier level 5, i.e.,
C≥5 = {(b)(z ∨ t ∨ b)(z ∨ t)(x ∨ t)(x ∨ t)}. The corresponding quantifier prefix
is ∃b∃x∀z∃t. Using the complete expansion of z ({z → 0, z → 1}) as the expan-
sion tree T , we get the following expansion formula

(b)(t{z→0} ∨ b)(x ∨ t{z→0}
)(x ∨ t{z→0})(t

{z→1}
)(x ∨ t{z→1}

)(x ∨ t{z→1}) ,

which has a simple resolution proof π. The conclusion of (∀exp-res) leads to the

proof object {5, 6, 7, 8, 9}4, but only clause 5 contains literals bound before quan-
tification level 5. After a universal reduction, the proof continues as described
in Example 1.

Theorem 5. The ∀exp-res rule is sound.

Proof. Assume otherwise, then one would be able to derive a proof object Pk−1
that is part of a ∀Red+Res refutation proof for true QBF Φ. Thus, the clause
corresponding to Pk−1 (cf. proof of Theorem 1) (

∨
i∈P

∨
l∈lit(i,<k) l) made Φ

false. However, the same clause can be derived directly by applying the expan-
sion T to the original QBF, i.e., expanding universal variables beginning with
quantification level k + 1, and propositional resolution on the resulting expan-
sion formula. Thus, this clause can be conjunctively added to the matrix without
changing satisfiability, leading to a contradiction. ut
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The resulting proof system can be viewed as a unification of the currently
known CEGAR approaches for solving quantified Boolean formulas [16,18,25].

Theorem 6. ∀Exp+Res does not p-simulate ∀Red+∀Exp+Res.

Proof. ∀Exp+Res does not p-simulate level-ordered Q-resolution [23]. ut

The combination of both rules makes the proof system stronger than merely
choosing between expansion and resolution proof upfront.

Theorem 7. There is a family of quantified Boolean formulas that have poly-
nomial refutation in ∀Red+∀Exp+Res, but have only exponential refutations in
∀Red+Res and ∀Exp+Res.

Proof. For this proof, we take two formulas that are hard for Q-resolution and
∀Exp+Res, respectively. We build a new family of formulas that has a polynomial
refutation in ∀Red+∀Exp+Res, but only exponential refutations in ∀Red+Res
and ∀Exp+Res.

The first formula we consider is formula (2) form [17], that we call DAGn in
the following:

∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.

(
∨

i∈1...2n
ci) ∧

∧
i∈1...n

(ei ∨ c2i−1) ∧ (ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

It is known that DAGn has a polynomial level-ordered Q-resolution proof and
only exponential ∀Exp+Res proofs [17]. As a second formula, we use the QParityn
formula [2]

∃x1 . . . xn∀z∃t2 . . . tn. xor(x1, x2, t2)∧
∧

i∈3...n
xor(ti−1, xi, ti)∧ (z∨ tn)∧ (z∨ tn)

where xor(o1, o2, o) = (o1∨o2∨o)∧(o1∨o2∨o)∧(o1∨o2∨o)∧(o1∨o2∨o) defines
o to be equal to o1 ⊕ o2. QParityn has a polynomial ∀Exp+Res refutation but
only exponential Q-resolution refutations [2]. We construct the following formula

∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.∀a∃b.∃x1 . . . xn∀z∃t2 . . . tn.∧
i∈1...n

(ei ∨ c2i−1) ∧ (ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i) ∧

(a ∨ b ∨
∨

i∈1...2n
ci) ∧ xor(x1, x2, t2) ∧

∧
i∈3...n

xor(ti−1, xi, ti) ∧ (z ∨ tn ∨ b) ∧ (z ∨ tn)

We argue in the following that this formula has a polynomial refutation in
∀Red+∀Exp+Res. First, using (∀exp-res) we can derive the proof object contain-
ing the clause (a ∨

∨
i∈{1...2n} ci) using the expansion tree T = {z → 0, z → 1}

and the clauses from the last row (analogue to Example 2). After applying univer-
sal reduction, the proof object representing clause (

∨
i∈{1...2n} ci) can be derived.

12



For the remaining formula, there is a polynomial and level-ordered resolution
proof [17], thus, the formula has a polynomial ∀Red+∀Exp+Res proof.

There is no polynomial Q-resolution proof, because deriving (
∨
i∈{1...2n} ci)

is exponential in Q-resolution. Likewise, there is no polynomial ∀Exp+Res proof
as the formula after deriving this clause has only exponential ∀Exp+Res refuta-
tions. ut

One question that remains open, is how the new proof system compares to
unrestricted Q-resolution. We already know that the new proof system polyno-
mially simulates both tree-like Q-resolution as well as level-ordered Q-resolution.

Theorem 8. ∀Red+∀Exp+Res does not p-simulate Q-resolution.

Proof (Sketch). We construct a formula that is hard for expansion and level-
ordered Q-resolution, but easy for (unrestricted) Q-resolution. We have already
seen in the proof of Theorem 7 that DAGn is hard for ∀Exp+Res but easy
for Q-resolution. However, the Q-resolution proof of DAGn is level-ordered.
Hence, we need an additional formula that is hard to refute for level-ordered
Q-resolution. We use the modified pigeon hole formula from [14] where un-
restricted resolution has polynomial proofs and resolution proofs that are re-
stricted to a certain variable ordering are exponential. Using universal quantifi-
cation, one can impose an arbitrary order on a level-ordered Q-resolution proof,
thus, there is a quantified Boolean formula which has only exponential level-
ordered Q-resolution but has a polynomial Q-resolution proof. The disjunction
of those two formulas gives the required witness. This formula is easy to refute
for Q-resolution, but the first one is hard for ∀Exp+Res and the second is hard
for level-ordered Q-resolution. ut

3.3 Comparison Between Extensions

We conclude this section by comparing the two extensions of the ∀Red+Res
calculus introduced in this paper.

Theorem 9. ∀Red+∀Exp+Res and ∀Red+Res with strengthening rule are in-
comparable.

Proof (Sketch). The family of formulas CR′n from proof of Corollary 1 separates
∀Red+∀Exp+Res and ∀Red+Res with strengthening rule. Since the strength-
ening rule is not applicable, all ∀Red+Res proofs are exponential while there is
a polynomial proof in ∀Red+∀Exp+Res.

The other direction is shown by using a similar construction as the one used
in the proof of Theorem 7. We use a combination of CRn and DAGn to construct
a formula that has only exponential refutations in ∀Red+∀Exp+Res, but a poly-
nomial refutation using the strengthening rule. The formula DAGn is used to
generate the premise for the application of the strengthening rule to solve CRn.
To generate this premise using the rule (∀exp-res) one needs an exponential
proof. There is a polynomial proof for DAGn in ∀Red+Res, but there is none
for CRn, thus, ∀Red+∀Exp+Res has only exponential refutations. ut
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Algorithm 1 Modified CEGAR solving loop for existential quantifier

1: ϕk is the propositional abstraction for quantifier ∃Xk

2: procedure solve∃(∃Xk. Ψ , Pk)
3: while true do
4: disable clauses Ck

i of ϕk where i /∈ Pk . those Ci are already satisfied < k
5: generate candidate solution Pk+1

∗ using SAT solver and abstraction ϕk

6: if no candidate exists then . there is a resolution proof π
7: return UNSAT, Pk−1

8: else if Ψ is propositional then . base case for structural recursion
9: return SAT, witness

10: verify candidate recursively, call solve∀(Ψ , Pk+1
∗ )

11: if candidate correct then
12: return SAT, witness
13: else
14: counterexample consists of Pk

ce and expansion tree T
15: refine ϕk such that one clause Ck

i in with i ∈ Pce must be satisfied
16: refine ϕk with abstraction of expansion of Φ with respect to T

Theorem 10. ∀Red+∀Exp+Res with strengthening rule and Q-resolution are
incomparable.

Proof. Follows from the proof of Theorem 8 as the witnessing formula can be
constructed such that the strengthening rule is not applicable. The other direc-
tion follows from the separation of Q-resolution and ∀Exp+Res by Beyersdorff
et al. [2]. ut

4 Experimental Evaluation

4.1 Implementation

We extended the implementation of CAQE with the possibility to use the rule
(∀exp-res) as introduced in Sec. 3.21. While the rule is applicable at every level
in the QBF in principle, the effectiveness decreases when applying it to deeply
nested formulas where CAQE tends to perform better [25] than RAReQS. We
aim to strike a balance between expansion and clausal-abstraction, i.e., keep-
ing the best performance characteristics of both solving methods. Thus, in our
implementation, we apply the expansion refinement (additional to the clausal-
abstraction refinement) to the innermost universal quantifier.

An overview of the CEGAR algorithm is given in Algorithm 1. There is a
close connection between the rules of the ∀Red+Res calculus and the presented
algorithm. Especially, we use a SAT solver to prove the refutation needed in
the rule (res). We refer to [25] for algorithmic details. Changes to the original
algorithm are written in bold text.

1 CAQE is available online at https://react.uni-saarland.de/tools/caqe/.
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Abstraction. The abstraction for quantifier ∃Xk, written ϕk is the projection of
the clauses of the matrix to variables in Xk, i.e.,

∧
1≤i≤m lit(i, k). We assume

that there is a operation to “disable” clauses in ϕk which corresponds to the
situation where a clause Ci is satisfied by some variable bound before k. Likewise,
for every clause we allow the assumption that this clause will be satisfied by a
some variable bound after k. This is used to generate candidate proof objects
Pk+1
∗ for inner levels. In the refinement step, this assumption can be invalidated,

i.e., there is a way to force satisfaction of a clause at level k. Those operations
can be implemented by an incremental SAT solver and two additional literals
controlling the satisfaction of clauses [25].

Algorithm. The algorithm recurses on the structure of the quantifier prefix and
communicates proof objects P, which indicate the clauses of the matrix that are
satisfied. At an existential quantifier, the abstraction generates a candidate so-
lution (line 5) and checks recursively whether the candidate is correct (line 10).
If not, the counterexample originally consists of a set of clauses (which could not
be satisfied from the inner existential quantifiers). We extend this counterexam-
ple to also include an expansion tree T from the levels below. Additionally to
the original refinement, we also build the expansion of the QBF with respect
to the expansion tree T , resulting in a QBF with the same quantifier prefix as
the current level (with additional existential variables due to expansion). This
QBF is then translated into a propositional formula in the same way as the
original QBF. Lastly, the abstraction ϕk is then conjunctively combined with
this propositional formula. Note that if the function returns UNSAT (line 7),
the corresponding resolution proof from the SAT solver can be used to apply the
rule (res) form the ∀Red+Res calculus.

As the underlying SAT solver in the implementation, we use PicoSAT [3],
MiniSat [8], cryptominisat [26], or Lingeling [4].

4.2 Evaluation

In our evaluation, we show that the established theoretical separations shown
in the last section translate to a significant empirical improvement. The evalua-
tion is structured by the following three hypothesizes: First, the strengthen and
expansion refinement give a significant improvement over the plain version of
CAQE. Combining both refinements is overall better than only applying one of
them. Second, we show that the improvement provided by the those refinements
is independently of the underlying SAT solver. Third, when comparing on a per
instance basis, the combined refinement effects the runtime mostly positively.
We show that the improvement is up to three orders of magnitude.

We compare our implementation against RAReQS [16], Qesto [18], DepQBF
in version 5.0 [21], and GhostQ [20]. For every solver except GhostQ, we use
Bloqqer [5] in version 031 as preprocessor. For our experiments, we used a ma-
chine with a 3.6 GHz quad-core Intel Xeon processor and 32 GB of memory.
The timeout and memout were set to 10 minutes and 8 GB, respectively. Ta-
ble 1 shows number of solved instances on the QBFGallery 2014 benchmark set,
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Table 1: Number of solved instances of the QBFGallery 2014 and QBFEval 2016
benchmark sets.

family total CAQE-cryptominisat RAReQS Qesto DepQBF GhostQ
plain strengthen expansion both

eval2012r2 276 128 129 146 149 134 132 139 145
bomb 132 94 95 94 94 82 78 80 82
complexity 104 60 68 86 85 90 76 51 43
dungeon 107 60 65 70 70 61 57 67 50
hardness 114 108 102 109 101 69 106 80 51
planning 147 45 93 65 95 144 55 38 13
testing 131 91 86 93 91 95 90 99 113
preprocessing 242 86 93 105 110 107 104 108 60

gallery2014 1253 672 731 768 795 782 698 662 557

eval2016 825 607 611 635 636 644 623 598 595

all 2078 1279 1342 1403 1431 1426 1321 1260 1152

broken down by benchmark family, as well as the more recent QBFEval 2016
benchmark set. For CAQE, we only report on the best performing version, that
is the one using cryptominisat as a backend solver.

The table shows that the strengthen and expansion refinement individually
improve over the plain version of CAQE in the number of solved instances.
Further, the combination of both refinements is the overall best solver, followed
by RAReQS.

In the following, we refer to the combination of strengthen and expansion
refinement as extended refinements. We want to detail the improvements due
to the extended refinements and show their independence of the backend solver.
The plot in Fig. 5 depicts the effect of the extended refinements with respect to
the solved instances. The improvements in the number of solved instances are
independent from the choice of the underlying SAT solver and range between
100 to 150 more instances solved compared to the plain version of CAQE.

The scatter plot depicted in Fig. 6 compares the running times of plain
CAQE to the one using extended refinements (both using cryptominisat) on a per
instance basis. Marks below the diagonal means that the variant using extended
refinements is faster. It is remarkable that the extended refinements have mostly
positive effect on the solving times. Only a few instances saw a significant increase
in solving time and even less timed out with extended refinements while being
solved before. On the other hand, we see improvements in solving time that
exceed three orders of magnitude. This is an empirical confirmation of our goal
stated before that our implementation of expansion-refinement adds performance
characteristic of expansion-based solvers while keeping the characteristics of the
clausal-abstraction algorithm.
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Fig. 5: Effect of the expansion refinement on the different configurations of CAQE
on the GBFGallery 2014 benchmark sets.

5 Related Work

Q-resolution [19] is a variant of propositional refutation that is sound and refu-
tation complete for QBF. There have been extensions proposed to Q-resolution,
like long-distance resolution [27] and universal resolution [13], some which are
implemented in the QCDCL solver DepQBF [21]. Recently, there has also been
extensions proposed that extend Q-resolution by more generalized axioms [22].
In some sense, the (∀exp-res) rule presented in this paper can be viewed as an
new axiom rule for the ∀Red+Res calculus.

The ∀Exp+Res calculus [17] was introduced to allow reasoning over expansion-
based QBF solving, exemplified by the QBF solver RAReQS [16]. The work on
∀Red+Res was motivated by the same desire, namely understanding the per-
formance of the recently introduced QBF solvers CAQE [25] and Qesto [18].
The incomparability of ∀Exp+Res and ∀Red+Res [2,17] lead to the creation of
stronger proof systems that unify those calculi, like IR-Calc [1]. Further separa-
tion results, between variants of IR-Calc and variants of Q-resolution, were given
in [2]. Those extensions, however, do not have accompanying implementations.
This also applies to recent work that is based on first-order resolution [9].

There are two well-known restrictions to Q-resolution, that is level-ordered
and tree-like Q-resolution. Those restricted calculi were shown to be incom-
parable [23]. QCDCL based solver exhibit level-ordered proofs [15] and it was
shown that ∀Exp+Res p-simulates tree-like Q-resolution [17]. We showed that
∀Red+Res is polynomial simulation equivalent to level-ordered Q-resolution,
which explains similar performance characteristics of the underlying solvers. Fur-
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Fig. 6: Scatter plot comparing the solving time (in sec.) of CAQE with and
without extended refinement.

ther, the strengthening rule presented in this paper can be viewed as a first step
towards breaking the level-ordered restriction. The ∀Red+∀Exp+Res calculus
p-simulates level-ordered and tree-like Q-resolution.

6 Conclusion

In this paper, we have introduced a new QBF proof calculus ∀Red+Res and
showed that it is suitable for describing CEGAR based solving algorithms. We
defined two extensions of the ∀Red+Res calculus and showed that there is a
theoretical advantage over the basic calculus. Based on this foundation, we im-
plemented an expansion refinement in the solver CAQE and evaluated it on
standard QBF benchmark sets. Our experiments show that our new implemen-
tation significantly outperforms the previous one, with little to no negative im-
pact, making it one of the most competitive QBF solver available. We have also
shown that our theoretical considerations and the consequent algorithmic change
explains those practical gains.

In future work, we want to improve the implementation by exploring heuris-
tics for the application of the different refinements and we want to explore al-
ternative versions of the strengthening rule presented in this paper.

Acknowledgments. I thank Christopher Hahn and the anonymous reviewers for
their comments on earlier versions of this paper.
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