Skip to main content

Spiking Cooperative Stereo-Matching at 2 ms Latency with Neuromorphic Hardware

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

We demonstrate a spiking neural network that extracts spatial depth information from a stereoscopic visual input stream. The system makes use of a scalable neuromorphic computing platform, SpiNNaker, and neuromorphic vision sensors, so called silicon retinas, to solve the stereo matching (correspondence) problem in real-time. It dynamically fuses two retinal event streams into a depth-resolved event stream with a fixed latency of 2 ms, even at input rates as high as several 100,000 events per second. The network design is simple and portable so it can run on many types of neuromorphic computing platforms including FPGAs and dedicated silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All code (including network and neuron parameters) and data sets necessary to reproduce the experiments are available at https://github.com/gdikov/SpikingStereoMatching.

References

  1. Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bussat, J.M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A., Boahen, K.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  2. Cheung, K., Schultz, S.R., Luk, W.: NeuroFlow: a general purpose spiking neural network simulation platform using customizable processors. Front. Neurosci. 9(516), 1–15 (2016)

    Google Scholar 

  3. Davies, E.: 3D vision and motion. In: Machine Vision. Signal Processing and its Applications, 3 edn., p. 443. Morgan Kaufmann, Burlington (2005)

    Google Scholar 

  4. Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinform. 2, 11 (2009). http://journal.frontiersin.org/article/10.3389/neuro.11.011.2008

    Google Scholar 

  5. Delbruck, T., Linares-Barranco, B., Culurciello, E., Posch, C.: Activity-driven, event-based vision sensors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 2426–2429, May 2010

    Google Scholar 

  6. Denk, C., Llobet-Blandino, F., Galluppi, F., Plana, L.A., Furber, S., Conradt, J.: Real-time interface board for closed-loop robotic tasks on the SpiNNaker neural computing system. In: International Conference on Artificial Neural Networks (ICANN), Sofia, Bulgaria, pp. 467–474, September 2013. http://mediatum.ub.tum.de/doc/1191903/90247.pdf

  7. Diamond, A., Nowotny, T., Schmuker, M.: Comparing neuromorphic solutions in action: Implementing a bio-inspired solution to a benchmark classification task on three parallel-computing platforms. Front. Neurosci. 9, 491 (2016). http://journal.frontiersin.org/article/10.3389/fnins.2015.00491

    Article  Google Scholar 

  8. Domínguez-Morales, M., Jimenez-Fernandez, A., Paz, R., López-Torres, M.R., Cerezuela-Escudero, E., Linares-Barranco, A., Jimenez-Moreno, G., Morgado, A.: An approach to distance estimation with stereo vision using address-event-representation. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 190–198. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24955-6_23

    Chapter  Google Scholar 

  9. Eibensteiner, F., Kogler, J., Scharinger, J.: A high-performance hardware architecture for a frameless stereo vision algorithm implemented on a FPGA platform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 623–630 (2014)

    Google Scholar 

  10. Everding, L., Walger, L., Ghaderi, V.S., Conradt, J.: A mobility device for the blind with improved vertical resolution using dynamic vision sensors. In: IEEE HealthCom 2016, Munich, Germany, September 2016

    Google Scholar 

  11. Firouzi, M., Conradt, J.: Asynchronous event-based cooperative stereo matching using neuromorphic silicon retinas. Neural Process. Lett. 43(2), 311–326 (2016)

    Article  Google Scholar 

  12. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  13. Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S., Brown, A.D.: Overview of the spinnaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013)

    Article  MathSciNet  Google Scholar 

  14. Georgieva, S., Peeters, R., Kolster, H., Todd, J.T., Orban, G.A.: The processing of three-dimensional shape from disparity in the human brain. J. Neurosci. 29(3), 727–742 (2009)

    Article  Google Scholar 

  15. Ghaderi, V.S., Mulas, M., Santos Pereira, V., Everding, L., Weikersdorfer, D., Conradt, J.: A wearable mobility device for the blind using retina-inspired dynamic vision sensors. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3371–3374, August 2015

    Google Scholar 

  16. Grossberg, S., Howe, P.D.: A laminar cortical model of stereopsis and three-dimensional surface perception. Vis. Res. 43(7), 801–829 (2003)

    Article  Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Jany, R., Richter, C., Woltmann, C., Pfanzelt, G., Förg, B., Rommel, M., Reindl, T., Waizmann, U., Weis, J., Mundy, J.A., et al.: Monolithically integrated circuits from functional oxides. Adv. Mater. Interfaces 1(1) (2014)

    Google Scholar 

  19. Kogler, J., Humenberger, M., Sulzbachner, C.: Event-based stereo matching approaches for frameless address event stereo data. In: Bebis, G., et al. (eds.) ISVC 2011. LNCS, vol. 6938, pp. 674–685. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24028-7_62

    Chapter  Google Scholar 

  20. Layher, G., Brosch, T., Neumann, H.: Real-time biologically inspired action recognition from key poses using a neuromorphic architecture. Front. Neurorobot. 11 (2017). http://journal.frontiersin.org/article/10.3389/fnbot.2017.00013/full

  21. Li, C., Brandli, C., Berner, R., Liu, H., Yang, M., Liu, S.C., Delbruck, T.: Design of an RGBW color VGA rolling and global shutter dynamic and active-pixel vision sensor. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 718–721. IEEE (2015)

    Google Scholar 

  22. Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128 \, \times \, 128\) \(120 \, \text{ db } \; 15 \, {\upmu }\)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ. 43(2), 566–576 (2008)

    Article  Google Scholar 

  23. Liu, Q., Pineda-Garca, G., Stromatias, E., Serrano-Gotarredona, T., Furber, S.B.: Benchmarking spike-based visual recognition: a dataset and evaluation. Front. Neurosci. 10, 496 (2016). http://journal.frontiersin.org/article/10.3389/fnins.2016.00496

    Google Scholar 

  24. Lorenz, M., Rao, M.S.R., Venkatesan, T., Fortunato, E., Barquinha, P., Branquinho, R., Salgueiro, D., Martins, R., Carlos, E., Liu, A., Shan, F.K., Grundmann, M., Boschker, H., Mukherjee, J., Priyadarshini, M., DasGupta, N., Rogers, D.J., Teherani, F.H., Sandana, E.V., Bove, P., Rietwyk, K., Zaban, A., Veziridis, A., Weidenkaff, A., Muralidhar, M., Murakami, M., Abel, S., Fompeyrine, J., Zuniga-Perez, J., Ramesh, R., Spaldin, N.A., Ostanin, S., Borisov, V., Mertig, I., Lazenka, V., Srinivasan, G., Prellier, W., Uchida, M., Kawasaki, M., Pentcheva, R., Gegenwart, P., Granozio, F.M., Fontcuberta, J., Pryds, N.: The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D Appl. Phys. 49(43), 433001 (2016). http://stacks.iop.org/0022-3727/49/i=43/a=433001

    Article  Google Scholar 

  25. Mahowald, M.A., Delbrück, T.: Cooperative Stereo Matching Using Static and Dynamic Image Features, pp. 213–238. Springer, Boston (1989). doi:10.1007/978-1-4613-1639-8_9

    Google Scholar 

  26. Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194(4262), 283–287 (1976)

    Article  Google Scholar 

  27. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  28. Müller, G.R., Conradt, J.: A miniature low-power sensor system for real time 2D visual tracking of led markers. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2429–2434, December 2011

    Google Scholar 

  29. Ohzawa, I., DeAngelis, G.C., Freeman, R.D., et al.: Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249(4972), 1037–1041 (1990)

    Article  Google Scholar 

  30. Piatkowska, E., Belbachir, A.N., Gelautz, M.: Cooperative and asynchronous stereo vision for dynamic vision sensors. Meas. Sci. Technol. 25(5), 1–8 (2014)

    Article  Google Scholar 

  31. Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA \(143\,\text{ dB }\) dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid State Circ. 46(1), 259–275 (2011)

    Article  Google Scholar 

  32. Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., Indiveri, G.: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9 (2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413675/

  33. Rast, A.D., et al.: Transport-independent protocols for universal AER communications. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 675–684. Springer, Cham (2015). doi:10.1007/978-3-319-26561-2_79

    Chapter  Google Scholar 

  34. Read, J.: Early computational processing in binocular vision and depth perception. Prog. Biophys. Mol. Biol. 87(1), 77–108 (2005)

    Article  Google Scholar 

  35. Richter, C., Jentzsch, S., Hostettler, R., Garrido, J.A., Ros, E., Knoll, A.C., Röhrbein, F., van der Smagt, P., Conradt, J.: Musculoskeletal robots: scalability in neural control. IEEE Robot. Autom. Mag. 23(4), 128–137 (2016). doi:10.1109/MRA.2016.2535081

    Article  Google Scholar 

  36. Rogister, P., Benosman, R., Ieng, S.H., Lichtsteiner, P., Delbruck, T.: Asynchronous event-based binocular stereo matching. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 347–353 (2012)

    Article  Google Scholar 

  37. Rowley, A.G.D., Stokes, A.B., Knight, J., Lester, D.R., Hopkins, M., Davies, S., Rast, A., Bogdan, P., Davidson, S.: PyNN on SpiNNaker software 2015.004, July 2015. http://dx.doi.org/10.5281/zenodo.19230

  38. Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of 2010 IEEE International Symposium on Circuits and systems (ISCAS), pp. 1947–1950. IEEE (2010)

    Google Scholar 

  39. Schraml, S., Schön, P., Milosevic, N.: Smartcam for real-time stereo vision-address-event based embedded system. In: VISApp (2), pp. 466–471 (2007)

    Google Scholar 

  40. Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L., Furber, S.: ConvNets experiments on SpiNNaker. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2405–2408, May 2015

    Google Scholar 

  41. Shi, B.E., Tsang, E.K.: A neuromorphic multi-chip model of a disparity selective complex cell. In: Thrun, S., Saul, L.K., Schölkopf, P.B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 1051–1058. MIT Press, Cambridge (2004)

    Google Scholar 

  42. Shimonomura, K., Kushima, T., Yagi, T.: Binocular robot vision emulating disparity computation in the primary visual cortex. Neural Netw. 21(23), 331–340 (2008). Advances in Neural Networks Research: International Joint Conference on Neural Networks, IJCNN 2007, July 2007. http://www.sciencedirect.com/science/article/pii/S089360800700247X

    Article  Google Scholar 

  43. Stewart, T.C., Kleinhans, A., Mundy, A., Conradt, J.: Serendipitous offline learning in a neuromorphic robot. Front. Neurorobot. 10, 1–11 (2016)

    Article  Google Scholar 

  44. Sugiarto, I., Liu, G., Davidson, S., Plana, L.A., Furber, S.B.: High performance computing on SpiNNaker neuromorphic platform: a case study for energy efficient image processing. In: 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC), pp. 1–8, December 2016

    Google Scholar 

  45. Walter, F., Röhrbein, F., Knoll, A.: Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks. Neural Netw. 72(C), 152–167 (2015)

    Article  Google Scholar 

  46. Yang, M., Liu, S.C., Delbruck, T.: A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous delta modulator for event encoding. IEEE J. Solid State Circ. 50(9), 2149–2160 (2015)

    Article  Google Scholar 

  47. Zitnick, C.L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans. Pattern Analy. Mach. Intell. 22(7), 675–684 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Temple and the SpiNNaker Manchester team for their invaluable hardware, software and support. We also acknowledge I. Krawczuk and L. Everding for fruitful discussions, technical assistance with benchmarks and power measurements as well as for help in obtaining good stereo-DVS datasets. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 720270 (Human Brain Project) and the Bundesministerium für Bildung und Forschung via grant no. 01GQ0440 (Bernstein Center for Computational Neuroscience Munich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dikov, G., Firouzi, M., Röhrbein, F., Conradt, J., Richter, C. (2017). Spiking Cooperative Stereo-Matching at 2 ms Latency with Neuromorphic Hardware. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics