Skip to main content

Simulation of Human Balance Control Using an Inverted Pendulum Model

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Human balance control is a complex feedback system that must be adaptable and robust in an infinitely varying external environment. It is probable that there are many concurrent control loops occurring in the central nervous system that achieve stability for a variety of postural perturbations. Though many engineering models of human balance control have been tested, no models of how these controllers might operate within the nervous system have yet been developed. We have created a synthetic nervous system that provides Proportional-Derivative (PD) control to a single jointed inverted pendulum model of human balance. In this model, angular position is measured at the ankle and corrective torque is applied about the joint to maintain a vertical orientation. The neural network computes the derivative of the angular position error, which allows the system to maintain an unstable equilibrium position and provide corrections at perturbations. This controller demonstrates the most basic components of human balance control, and will be used as the basis for more complex controllers and neuromechanical models in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horak, F.B., Macpherson, J.M.: Postural orientation and equilibrium. In: Terjung, R. (ed.) Comprehensive Physiology. Wiley Inc., Hoboken (1996)

    Google Scholar 

  2. Horak, F.B.: Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35(Supplement 2), ii7–ii11 (2006)

    Article  MathSciNet  Google Scholar 

  3. Peterka, R.J.: Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22(2), 63–68 (2003)

    Article  Google Scholar 

  4. Peterka, R.J., Loughlin, P.J.: Dynamic regulation of sensorimotor integration in human postural control. J. Neurophysiol. 91(1), 410–423 (2004)

    Article  Google Scholar 

  5. Chiba, R., Takakusaki, K., Ota, J., Yozu, A., Haga, N.: Human upright posture control models based on multisensory inputs; in fast and slow dynamics. Neurosci. Res. 104, 96–104 (2016)

    Article  Google Scholar 

  6. Maurer, C., Mergner, T., Peterka, R.J.: Multisensory control of human upright stance. Exp. Brain Res. 171(2), 231 (2006)

    Article  Google Scholar 

  7. Mergner, T., Maurer, C., Peterka, R.J.: A multisensory posture control model of human upright stance. Prog. Brain Res. 142, 189–201 (2003). Elsevier

    Article  Google Scholar 

  8. Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88(3), 1097–1118 (2002)

    Google Scholar 

  9. Hunt, A.J., Schmidt, M., Fischer, M.S., Quinn, R.D.: A biologically based neural system coordinates the joints and legs of a tetrapod. Bioinspir. Biomim. 10(5), 055004 (2015)

    Article  Google Scholar 

  10. Szczecinski, N.S., Chrzanowski, D.M., Cofer, D.W., Moore, D.R., Terrasi, A.S., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: MantisBot: a platform for investigating mantis behavior via real-time neural control. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS, vol. 9222, pp. 175–186. Springer, Cham (2015). doi:10.1007/978-3-319-22979-9_18

    Chapter  Google Scholar 

  11. Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M.S., Quinn, R.D.: Using animal data and neural dynamics to reverse engineer a neuromechanical rat model. Biomim. Biohybrid Syst. Living Mach. 2015, 211–222 (2015)

    Article  Google Scholar 

  12. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol. Cybern. 108(1), 1–21 (2013)

    Article  Google Scholar 

  13. Li, W., Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 144–154. Springer, Cham (2016). doi:10.1007/978-3-319-42417-0_14

    Chapter  Google Scholar 

  14. Szczecinski, N.S., Hunt, A.J., Quinn, R.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bosco, G., Poppele, R.E.: Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. J. Neurophysiol. 78(3), 1421–1432 (1997)

    Google Scholar 

  16. Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support by the NASA Office of the Chief Technologist, Grant Number NNX12AN24H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade W. Hilts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hilts, W.W., Szczecinski, N.S., Quinn, R.D., Hunt, A.J. (2017). Simulation of Human Balance Control Using an Inverted Pendulum Model. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics