Skip to main content

Bio-inspired Robot Design Considering Load-Bearing and Kinematic Ontogeny of Chelonioidea Sea Turtles

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

This work explores the physical implications of variation in fin shape and orientation that correspond to ontogenetic changes observed in sea turtles. Through the development of a bio-inspired robotic platform – CTurtle – we show that (1) these ontogenetic changes apparently occupy stable extrema for either load-bearing or high-velocity movement, and (2) mimicry of these variations in a robotic system confer greater load-bearing capacity and energy efficiency, at the expense of velocity (or vice-versa). A possible means of adapting to load conditions is also proposed. We endeavor to provide these results as part of a theoretical framework integrating biological inquiry and inspiration within an iterative design cycle based on laminate robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown Jr., H., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: RHex: a biologically inspired hexapod runner. Auton. Robots 11(3), 207–213 (2001)

    Article  MATH  Google Scholar 

  2. Askari, H., Kamrin, K.: Intrusion rheology in grains and other flowable materials. Nat. Mater. 15(12), 1274–1279 (2016)

    Article  Google Scholar 

  3. Autumn, K., Dittmore, A., Santos, D., Spenko, M., Cutkosky, M.: Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 209(Pt. 18), 3569–3579 (2006)

    Google Scholar 

  4. Birkmeyer, P., Peterson, K., Fearing, R.S.: A dynamic 16g hexapedal robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2683–2689 (2009)

    Google Scholar 

  5. Cham, J.G., Bailey, S.A., Clark, J.E., Full, R.J., Cutkosky, M.R.: Fast and robust: hexapedal robots via shape deposition manufacturing. Int. J. Rob. Res. 21(10–11), 869–882 (2002)

    Article  Google Scholar 

  6. Dodd Jr., C.K.: Synopsis of the biological data on the loggerhead sea turtle caretta caretta (linnaeus 1758) (1988)

    Google Scholar 

  7. Eckert, K.L., Luginbuhl, C.: Death of a giant. Mar. Turt. Newsl. 43, 2–3 (1988)

    Google Scholar 

  8. Hoover, A., Steltz, E., Fearing, R.: An autonomous 2.4g crawling hexapod robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 26–33. IEEE (2008)

    Google Scholar 

  9. Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)

    Article  Google Scholar 

  10. Kingsley, D., Quinn, R., Ritzmann, R.: A cockroach inspired robot with artificial muscles. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1837–1842. IEEE (2006)

    Google Scholar 

  11. Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339, 1408–1412 (2013)

    Article  Google Scholar 

  12. Luck, K., Campbell, J., Jansen, M., Aukes, D.M., Ben Amor, H.: From the lab to the desert: fast prototyping and learning of robot locomotion. In: Robotics: Science and Systems Conference (RSS 2017)

    Google Scholar 

  13. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired. Insect-Scale Robot. Sci. 340(6132), 603–607 (2013)

    Google Scholar 

  14. Mazouchova, N., Gravish, N., Savu, A., Goldman, D.I.: Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles. Biol. Lett. 6, 398–401 (2010)

    Article  Google Scholar 

  15. Mazouchova, N., Umbanhowar, P.B., Goldman, D.I.: Flipper-driven terrestrial locomotion of a sea turtle-inspired robot. Bioinspiration Biomimetics 8(2), 026, 007 (2013)

    Google Scholar 

  16. Pritchard, P., Mortimer, J.: Taxonomy, external morphology, and species identification. Res. Manag. Tech. Conserv. Sea Turtles 4, 21 (1999)

    Google Scholar 

  17. Renous, S., Bels, V.: Comparison between aquatic and terrestrial locomotions of the leatherback sea turle (dermochelys coriacea). J. Zool. 230(3), 357–378 (1993)

    Article  Google Scholar 

  18. Smith, K.U., Daniel, R.S.: Observations of behavioral development in the loggerhead turtle (caretta caretta). Science 104, 154–156 (1946)

    Article  Google Scholar 

  19. Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkosky, M., Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkoskly, M.R., Cutkosky, M.: Smooth vertical surface climbing with directional adhesion. IEEE Trans. Rob. 24(1), 65–74 (2008)

    Article  Google Scholar 

  20. Umedachi, T., Vikas, V., Trimmer, B.A.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration Biomimetics 11(2), 025001 (2016)

    Google Scholar 

  21. Wyneken, J.: Sea turtle locomotion: mechanics, behavior, and energetics. In: Lutz, P.L. (ed.) The Biology of Sea Turtles, pp. 168–198. CRC Press (1997)

    Google Scholar 

  22. Zug, G.R., Parham, J.F.: Age and growth in leatherback turtles, dermochelys coriacea (testudines: Dermochelyidae): a skeletochronological analysis. Chelonian Conserv. Biol. 2, 244–249 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Aukes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jansen, A., Luck, K.S., Campbell, J., Amor, H.B., Aukes, D.M. (2017). Bio-inspired Robot Design Considering Load-Bearing and Kinematic Ontogeny of Chelonioidea Sea Turtles. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics