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Abstract. We describe the first robot designed to emulate specific per-
ceptual and motor capabilities of the fiddler crab. An omnidirectional
robot platform uses onboard computation to process images from a 360◦

camera view, filtering it through a biological model of the crab’s om-
matidia layout, extracting potential ‘predator’ cues, and executing an
evasion response that also depends on contextual information. We show
that, as for real crabs, multiple cues are needed for effective escape in
different predator-prey scenarios.

1 Introduction

Fiddler crabs are a semi-terrestrial marine species of crab which use visual infor-
mation to make behavioural decisions such as escaping from predators, selecting

(a) (b)

Fig. 1: (a) The Robocrab (inset: a real crab). (b) System schematic. Arrows:
communication of data; dashed lines: hierarchical component relations.
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mates, signalling conspecifics and detecting their burrows [5, 6, 16, 21]. We ex-
plore the mechanisms of crab behaviour using a biorobotic approach (Fig. 1).

Courtship and burrow defence are regulated from the stimuli detected below
the horizon, while the stimuli for initiating the evasion behaviour are detected
above the horizon [6]. This paper focuses on the evasion behaviour of fiddler
crabs, as its visuomotor characteristics, response stages and context dependence
have been extensively studied [5].

An important characteristic of fiddler crabs is their ability to move in any
direction while maintaining a fixed orientation or rotating around their centre
of mass independently of translation. This allows them to escape rapidly from
a potential threat independently of their pose. Another striking feature is their
two panoramic compound eyes, located on eyestalks on the front part of the
carapace, each with a 360◦ view. The eyes are composed from a large number
of ommatidia in a particular layout, specialised for detection of behaviourally
relevant cues [15], despite the low resolution [5]. In addition, the fact that crabs
live on mud flats simplifies the identification the visual horizon and alignment
of the eye equator to it [21].

The initiation of the evasion response depends not only on the location of the
stimuli above the horizon but on additional cues and context [3]. The response
itself can also differ. When a fiddler crab identifies a threatening stimulus but
does not have a burrow, it first freezes, then runs in the opposite direction to the
stimulus and rotates around its centre of mass to place the threatening stimulus
on one of its sides [7]. On the other hand, burrow-holder fiddler crabs always
run towards their burrow under the presence of any threatening stimulus [2],
and will then pause again outside the burrow before making a descent.

In the following sections we describe the hardware choices, then the imple-
mentation of motion control, path integration, visual processing and behavioural
intelligence. This is followed by the results of experiments on the evasion response
of the robot, using the same paradigm as has been used for crabs. We discuss
the conclusions that can be drawn and the plans for future work.

2 Methods

Robot Platform Fiddler crabs have complex legged actuation, but for the
purposes of mimicking escape, the crucial feature is their ability to execute om-
nidirectional motions on a 2D plane (the mud flat), described by a 3D motion
vector (x, y, θ), where x and y define the position in the 2D space and θ the ori-
entation. Thus, the robot platform used is omnidirectional, utilising Mecanum
wheels, in which the sideways forces exerted by the rollers attached to the wheels
can be used in combination to obtain any direction of motion (see section 2).
Each wheel is actuated by a DC motor. The actual size of the robot is x10 factor
larger than the real fiddler crab.

This work was in part supported by an Australian Research Council (ARC) Dis-
covery Grant (DP160102658).



Sensory systems Each motor is equipped with an optical encoder used for
odometry, equivalent to propriceptive input for leg motion in the crab. We added
an IMU (inertia measurement unit) to replicate the statocyst organ of the fiddler
crabs [14]. The robot is equipped with a Ricoh Theta S camera to imitate the
eyestalks of the fiddler crabs, and provide a 360◦ field of view.

Electronics, Processing and Communications The robot platform includes
a custom Arduino board (Duemilanove) and the respective I/O expansion shield
with interfaces to the sensors and the motors, which is used for real-time pro-
cessing. The main processing unit is a fanless lightweight (250 grams) PC which
is used for image processing on the fly, on-board motion control and decision
making processes. The PC and Arduino communicate via serial port, through
an asynchronous communication interface.

Motion controller Fig. 2b summarises the method implemented to enable
a pose command in the operational space of the robot x, y, θ to result in the
corresponding movement of the robot base, following the methods in [13, 18, 19].
Every time a new pose command is received by the tracker, the motion profile
module is called to provide a sinusoidal motion profile to implicitly control the
accelerations of the system. The output is the interpolated substeps for each of
the three dimensions x, y, θ. Next, the complete trajectory is tracked utilising
the operational space controller which is running at 15 Hz with a fixed duty cycle
for each substep. This uses three PD controllers one for each dimension x, y and
θ to reach any target in the 3D space, plus a feedforward term to reduce the
reaction time. This produces the desired robot velocities ẋ, ẏ, θ̇ which then need

(a)

(b)

(c)

Fig. 2: (a) Robot frame, operation space velocities and linear velocities at the
mounting points of the wheels, due to angular velocities of the wheels. (b) Sys-
tem software architecture. (c) Control structure including operational space and
realtime controller.



to be transformed to motor/wheel velocities ω1, ω2, ω3, ω4 through kinematic
modelling of the robot (Fig. 2a). These are sent to the Arduino, on which the
realtime controller realises the specified motor angular velocities on the motors
using 200Hz PID control for each wheel.

Path integration Fiddler crabs use path integration to maintain an accurate
estimate of their position relative to their burrow while foraging. In [8] and [9]
Layne claims that crabs can accurately path integrate solely due to their leg
proprioceptor sensors. However, crabs also possess an advanced statocyst organ
that is capable of sensing accurately linear and angular accelerations [14]. Hence,
we decided to utilise both the wheel encoders as well as an IMU to localise the
Robocrab based on the work presented in [1], [10] and [20].

Utilising motors’ optical encoders and inverse kinematics, the Robocrab’s
velocities in the 3D space x, y, θ are estimated. Using acceleration and orienta-
tion information from the Inertia Measurement Unit (IMU), a second estimate
of Robocrab’s velocities is obtained. The two estimates are fused with a com-
plementary filter to obtain a robust estimate of Robocrab’s velocities, that is
integrated to get the pose of the robot relative to burrow.

Modelling the compound eye The spatial distribution of ommatidia in the
compound eye is described by the sampling resolution and every ommatidium
has its own optical resolution (i.e. receptive field). We use the model from [15]
(supplied to us by the authors) which describes the optical resolution using a
Gaussian distribution for each ommatidium, while for the sampling resolution
a combination of inverse sine functions is used. This model consists of 7, 971
ommatidia positions in spherical coordinates (elevation, azimuth and radius).
To create our twin-eye model we just drop the samples from the medial zone,
duplicate the lateral zone, and invert the y axis to create the half-right eye.

(a) (b) (c)

Fig. 3: Sampling and optical resolution of the twin-eye model. (a) represents the
3D model of the twin-eye sampling resolution. In (b) we represent the optical
resolution of the left half-eye using Gaussian contours on the Y − Z axes. This
is more visible in (c), where we plot a closer view of it.



Fig. 4: A fully panoramic 360◦ crab’s view image, created using Voronoi diagrams
and the twin-eye sampling resolution model.

Finally, we merge the two half-eyes to create the twin-eye of Fig. 3a. This model
has 9, 740 ommatidia in total, 4, 870 for each eye. To reduce the compution cost
of applying a Gaussian filter for each ommaditium, we instead filter the image
before sampling from it using two different filters: for the central pixels we use
Gaussian blurring to incorporate information from all the adjacent pixels of every
sample; and for the peripheral samples we use rotational blurring to imitate the
Gaussian blurring on the fisheye-image. To visualise the result we use Voronoi
diagrams to fill sets of pixels with the colour of their corresponding ommatidia
(Fig. 4).

Visual cue extraction Fiddler crabs typically live in areas with open, clear
skies, hence a predator above the horizon, typically a bird, can be detected by
its high contrast against the bright sky [21]. In the lab the segmentation of
the artificial predator and burrow from the cluttered background is achieved by
using a distinctive colour for these objects and utilising a simple colour filter
from OpenCV as shown in Fig. 5. Such filtering provides a noisy segmentation
signal, similar to a natural one. A Jacobian matrix Vj maps the pixel space to the
ommatidia space. The set of activated ommatidia is described as a 2D contour
within the 3D manifold shaped by the 3D placement of the ommatidia in space.

First, we assume that any detected object below the horizon level is the
burrow and only objects above the horizon could be a potential predator. Based
on the findings on [4], [16] and [21] a set of visual cues that are assumed to be
used by the fiddler crabs in order to identify whether the detected object is a
predator or not are extracted:

– Ommatidia number : Number of activated ommatidia.
– Elevation : The elevation of the centroid of the ommatidia region.
– Azimuth : The azimuth of the centroid of the ommatidia region.
– Elevation velocity : Angular vertical velocity of the ommatidia region [16].
– Azimuth velocity : Angular horizontal velocity of the ommatidia region [16].



(a) (b)

Fig. 5: (a) Captured fisheye images of a cluttered environment, with pink burrow
and predator. (b) Stitched panoramic image after it has been colour filtered and
passed through the optics of the eye model.

– Looming : The rate the activated ommatidia region grows [11].
– Flickering : The rate of activation and deactivation of the ommatidia region

within a window of x frames [16].

Behavioural intelligence In Fig. 1b we provide a schematic representation of
the overall system, with the following behavioural intelligence components:

Predator Identification: First, it is necessary to identify the predator given
the visual cues. In [3], [4], [16] and [21] biologists present quantitative results
that relate the triggering of the evasion with the respective set of visual cues.
Consequently, for the robot, the predator identification block uses some of the
visual cues and if one or more of these quantities exceed its respective upper
threshold value, then the detected object is classified as predator.

Contextual Information: In [12] and [17] it has been demonstrated that fiddler
crabs and other species of crabs are able to incorporate contextual information
in their decision making scheme and alter their actions according to them. The
contextual submodule for the Robocrab tracks whether it has a burrow or not,
which will determine the direction of the evasive response; and whether the
burrow location information should be taken from the path integration module
or the visual detection of the burrow.

Threat Alert: In [2], fiddler crabs are shown to evaluate their risk level and
compare it with the cost of an evasion action to decide whether they should
perform an action or not. The threat alert module is obtains the contextual in-
formation and predator characteristics from the two previously introduced sub-
modules and updates the threshold limits according to the risk level in a inverse
proportional fashion. In our current implementation the risk level is a linear
function of the distance to the burrow. Additionally, the threat alert submodule
declares whether a threat is present or not and initiates the evasion response.

Action Selection: The action sets are basically separated into two layers. The
first distinction is between the burrow-holder and non-burrow holder, determined
by contextual information. The second layer includes actions corresponding to
the stages of the evasion response as in section 1. Thus, depending on Robocrab’s



(a) (b)

Fig. 6: Sketch (a) and the original top-view representations (b) of the experimen-
tal set-up, illustrating the four sets of experiments with the robot being placed
under and off track and facing the dummy or side-on the dummy.

evasion stage, the respective action is selected. In a burrow-holder scenario, the
action selection module coordinates the motion control with the localisation and
the visual information of the burrow location to return to its burrow. For a non-
burrow holder, it coordinates the motion control module with the visual based
predator location to run away from the threat.

3 Results

Experimental methods To evaluate the performance of the robot we run a
set of experiments similar to those reported for crabs in [3], where a dummy
predator (a sphere pulled along a straight track, see Fig. 6) is used to stimulate
and evasion response in a stationary crab. We track the evolution of the relevant
visual cues preceding the moment in which the robot reacts to examine which
cue is most effective for triggering the response.

In the first two scenarios we look at the ‘home-run’ response, and in the sec-
ond at the ‘burrow-descent’ response, which in the crab and our model involves
different visual cues. Specifically, we set the thresholds for the home-run stage
at 4 activated ommatidia, 0.020 rad s−1 horizontal or 0.018 rad s−1 vertical ve-
locity; and for burrow-descent at 20 activated ommatidia, or a looming rate of
1 (doubling the size in one frame) with a minimum of 5 activated ommatidia.
The thresholds were tuned based on preliminary experiments to obtain similar
behaviour to fiddler crabs and they are indicated by the horizontal-dashed line
in the figures.

For the home-run, we test the robot from two positions, either 60 cm offset
from the track of the dummy with the dummy moving at a constant speed of
62 cms−1, or directly under the track of the dummy, with a speed of 47 cms−1,



(a) facing (b) side-on

Fig. 7: Visual cue evolution during the 2 sec preceding a response during off-track
home-run experiments with two heights and directions of the dummy predator.

as in [3]. In each case we test with the robot either facing towards the dummy’s
approach direction or side-on, and at two different heights (38 cm and 51 cm) of
the stimulus. Notice that the height of centre of the camera lens mounted on the
robot is at 26 cm distance from the ground. This produces a total of eight test
conditions, and we run 5 trials for each condition. For the burrow-descent, we
test with the robot under the track and the dummy at a lower height (32 cm),
again facing or side-on to the predator, and with two different approach speeds,
62 cms−1 or 15 cms−1. This produces 4 further conditions for each of which we
again run 5 trials.

Home-run, offset from the predator track This simulates a scenario in
which a predator flies along the horizon passing by the crab. When the robot is
side-on to the dummy, for both heights of the dummy, we see that the triggering
is caused by the horizontal velocity (see Fig. 7b). A higher horizontal velocity
is obtained for the higher dummy, leading to a more reliable reaction when the
dummy is more distant (see Fig. 10). This could be a result of the limited number
of ommatidia available for the higher elevations of the eye model. The vertical
velocity does not provide any useful information, and at the reaction frame, the
number of activated ommatidia is only around 2 for the lower dummy, and 1
for the higher dummy, i.e., well below threshold. When the robot is facing the
predator approach direction, we do not see much difference, with the horizontal
velocity still providing the most information (Fig. 7a). The robot is able to track



(a) facing (b) side-on

Fig. 8: Visual cue evolution during the 2 sec preceding a response during under-
track home-run experiments with two heights and directions of the dummy
predator.

the dummy from a longer distance/time due to the higher sampling resolution
in the frontal vs. lateral field. However, it reacts when the dummy is at a shorter
distance (Fig. 10) and the higher dummy triggers a later reaction.

Home-run, under the predator track This case resembles a predator flying
directly above a crab. With the robot side-on to the predator, at both dummy
heights, the vertical velocity triggers the escape, while the horizontal velocity
does not provide useful information. The ommatidia values are similar to the
off-track experiments with a difference in the lower height scenario, where the
average number of ommatidia activated at the reaction frame is nearer to the
threshold. In Fig. 10 we can see that the robot waits for the dummy to come
closer before it reacts, but the uncertainty is greater for the higher dummy, with
some reactions occurring only when the dummy is right above the robot.

By contrast, when facing the dummy the number of activated ommatidia is
the visual cue which triggers the evasion (see Fig. 8a). From the figures, it is clear
that a lower track-height allows the robot to track the dummy for longer time and
more consistently. However, compared to the side-on under-track experiment, the
robot reacts earlier regarding the distance from the dummy (see Fig. 10). The
cause of this unexpected result is the fact that the frontal area of our eye’s model
is the location where the merging of the two eyes happens. When we merge the
two eyes an object in the environment of the robot could be seen by both half-eyes



(a) facing (b) side-on

Fig. 9: Visual cue evolution during the 2 sec preceding a burrow descent response,
with two speeds and directions of the dummy predator.

depending on its distance from the robot. This could cause an abnormally large
ommatidia-blob (number of ommatidia activated) or excessively high horizontal
velocity, which could be result of trading the activated ommatidia from the one
eye to the other in almost each subsequent frame. This effect could duplicate the
number of activated ommatidia and increase the perceived horizontal velocity. In
the higher track scenario this issue is even more apparent, as the ommatidia-blob
is smaller and therefore its detection is less consistent. However, these artefacts
appear due limitations of the twin-eye model, which were a trade-off to use only
one 360◦ camera as described in section 2.

Burrow descent As described in the methods, we finally examined the evolu-
tion of visual cues relative to the ‘burrow-descent’ stage of the crab’s behaviour.
This assumes the crab has reached its burrow and now requires a stronger threat
to make the costly move of entering it, and as described in the experimental
methods, relies on different cues. When the robot is side-on to the predator, Fig.

Fig. 10: The distance of the dummy from the robot at the reaction frame for
every experimental scenario.



9b illustrates that in a fast dummy attack the robot evasion is caused by the
looming, while in a slow one the number of activated ommatidia will trigger the
behaviour when the dummy is close enough to the robot. Following the exper-
iments in [11], this could be a reasonable reaction scenario. In Fig. 10 we can
see that the robot reacts in a greater distance from the predator in a fast attack
rather than a slow one.

On the other hand, aligning the frontal axis to the track gives unexpected re-
sults. As for the under-track experiments, the looming and the activated omma-
tidia numberare over-activated because of the twin-eye stitching. Fig. 9a shows
that slow dummies activate the looming, which is unrealistic, but can be ex-
plained if the robot sees the dummy with one eye in one time-step and with
both eyes in the next. Additionally, Fig. 10 shows that there is great uncertainty
about the reaction distance, while in the fast-dummy scenario the robot has very
limited time to react due to the above confusion, leading to a very late response.

4 Discussion

We have demonstrated for the first time a robot design, the Robocrab, that is
a suitable platform to explore hypotheses about the evasion behaviour of real
crabs. It perceives the world through the same filter as a crab eye, can perform
omnidirectional movement, and can be tested under comparable experimental
conditions. In this paper we showed how this allowed us to test the effectiveness of
different visual cues to initiate the evasion response. The behavioural intelligence
framework allows this response to be modulated by the presence or absence of
a burrow, and the estimated distance of the burrow, based on path integration.
Qualitative results of the evasion behaviour are demonstrated with videos.

We plan to further explore the visual experience of the Robocrab during es-
cape. Without a burrow, it attempts to move away from the predator; with a
burrow, it attempts to return to the estimated location. This raises the interest-
ing issue of whether and how crabs may compensate for their own self motion
while continuing to assess the visual threat, and whether the initial freeze stage
is important in its decision-making. In practice, it has proved difficult to ob-
tain path integration of comparable accuracy to the crab so this will be our
future focus. We are also interested to use this system to explore the learning
observed in crabs to repeated threatening stimuli, and ultimately to understand
the underlying neural processes of this complex, coordinated behaviour.
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