Skip to main content

Bio-inspired Tensegrity Soft Modular Robots

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity modules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burks, A.: Essays on Cellular Automata. University of Illinois Press, Urbana (1970)

    MATH  Google Scholar 

  2. Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss M.: Self organizing robots based on cell structures – CEBOT. In: IEEE International Conference on Robotics and Automation, pp. 145–150, 31 October–2 November 1989

    Google Scholar 

  3. Moubarak, P., Ben-Tzvi, P.: Modular and reconfigurable mobile robotics. Robot. Auton. Syst. 60(12), 1648–1663 (2012)

    Article  Google Scholar 

  4. Yim, B.M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems: challenges and opportunities for the future. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

  5. Morin, S.A., et al.: Elastomeric tiles for the fabrication of inflatable structures. Adv. Funct. Mater. 24(35), 5541–5549 (2014)

    Article  Google Scholar 

  6. Vergara, A., Lau, Y., Mendoza-Garcia, R.-F., Zagal, J.C.: Soft modular robotic cubes: toward replicating morphogenetic movements of the embryo. PLoS ONE 12(1), e0169179 (2017)

    Article  Google Scholar 

  7. Onal, C.D., Rus, D.: A modular approach to soft robotics. In: 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, pp. 1038–1045, 24–27 June 2012

    Google Scholar 

  8. Lee, J.Y., Kim, W.B., Choi, W.Y., Cho, K.J.: Soft robotic blocks: introducing SoBL, a fast-build modularized design block. IEEE Robot. Autom. Mag. 23(3), 30–41 (2016)

    Article  Google Scholar 

  9. Yim, S., Sitti, M.: SoftCubes: toward a soft modular matter. In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 530–536, 6–10 May 2013

    Google Scholar 

  10. Wang, W., Rodrigue, H., Ahn, S.-H.: Deployable soft composite structures. Sci. Rep. 6 (2016)

    Google Scholar 

  11. Jenett, B., et al.: Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Robot. 4, 33–48 (2016)

    Article  Google Scholar 

  12. Germann, J., Maesani, A., Pericet, Camara R., Floreano, D.: Soft cell for programmable self-assembly of robotic modules. Soft Robot. 1(4), 239–245 (2014)

    Article  Google Scholar 

  13. Germann, J.: Soft cells for modular robots. Ph.D. dissertation, nr. 6217, EPFL, CH (2014)

    Google Scholar 

  14. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, New York (1983)

    Google Scholar 

  15. Ingber, D.E., Wang, N., Stamenovic, D.: Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. (2014)

    Google Scholar 

  16. Ingber, D.E.: The architecture of life. Sci. Am. 278(1), 48–57 (1998)

    Article  Google Scholar 

  17. Krause, F., Wilke, J., Vogt, L., Banzer, W.: Intermuscular force transmission along myofascial chains: a systematic review. J. Anat. 77(12) (2006)

    Google Scholar 

  18. Yu, C., Haller, K., Ingber, D., Nagpal, R.: Morpho: a Self-deformable modular robot inspired by cellular structure. In: IEEE/RSJ International Conference on Intelligent Robot and Systems, Nice, France, 22–26 September 2008

    Google Scholar 

  19. Rieffel, J., Trimmer, B., Lipson, H.: Mechanism as mind - what tensegrities and caterpillars can teach us about soft robotics. In: Artificial Life: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, Cambridge, MA, pp. 506–512, 5–8 August 2008

    Google Scholar 

  20. Bruce, J., Caluwaerts, K., Iscen, A., Sabelhaus, A.P., SunSpiral, V.: Design and evolution of a modular tensegrity platform. In: IEEE International Conference on Robotics and Automation, (ICRA), Hong Kong, China, 31 May– 7 June 2014

    Google Scholar 

  21. de Oliveira, M.C., Skelton, R.E.: Tensegrity Systems, Chap. 1. Springer, New York (2009). doi:10.1007/978-0-387-74242-7

    Book  MATH  Google Scholar 

  22. Agogino, A., SunSpiral V., Atkinson, D.: SuperBall bot – structure for planetary landing and exploration. Final Report for the NASA Innovative Advanced Concepts, NASA Ames Reasearch Center, Intelligent Systems Division, July 2013

    Google Scholar 

  23. Umedachi, T., Vikas, V., Trimmer, B.A., et al.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bionspir. Biomim. 11(2) (2016)

    Google Scholar 

  24. Kanu, E.N., Daltorio, K.A., Quinn, R.D., Chiel, H.J.: Correlating kinetics and kinematics of earthworm peristaltic locomotion. In: 4th International Conference of Living Machines, Barcelona, Spain, pp. 92–96, 28–31 July 2015

    Google Scholar 

  25. Mirletz, B.T., Park, I., Quinn, R.D., Sunspiral, V.: Towards bridging the reality gap between tensegrity simulation and robotic hardware. In: IEEE/RSJ International Conference on Intelligent Systems (IROS), Hamburg, Germany, 28 September–2 October 2015

    Google Scholar 

  26. Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.: Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)

    Article  Google Scholar 

  27. Gad-el-Hak, M.: The MEMS Handbook. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  28. Whitney, J.P., Sreetharan, P.S., Ma, K.Y., Wood, R.J.: Pop-up book MEMS. J. Micromech. Microeng. 21(11) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zappetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zappetti, D., Mintchev, S., Shintake, J., Floreano, D. (2017). Bio-inspired Tensegrity Soft Modular Robots. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics