Skip to main content

Bioinspired Magnetic Navigation Using Magnetic Signatures as Waypoints

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Diverse taxa use Earth’s magnetic field in conjunction with other sensor modes to accomplish navigation tasks that range from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, animal magnetoreception remains a poorly understood, and active research area. Concurrently, Earth’s magnetic field offers a signal that engineered systems can leverage for navigation and localization in environments where man-made systems such as GPS are either unavailable or unreliable. Using a proxy for Earth’s magnetic field, and inspired by migratory animal behavior, this work implements behavioral strategies to navigate through a series of magnetic waypoints. The strategies are able to navigate through a closed set of points, in some cases running through several “laps”. Successful trials were observed in both a range of environmental parameters, and varying levels of sensor noise. The study explores several of these parameter combinations in simulation, and presents preliminary results from a version of the strategy implemented on a mobile robot platform. Alongside success, limitations of the simulated and hardware algorithms are discussed. The results illustrate the feasibility of either an animal, or engineered platform to use a set of waypoints based on the magnetic field to navigate. Additionally, the work presents an engineering/quantitative biology approach that can garner insight into animal behavior while simultaneously illuminating paths of development for engineered algorithms and systems.

The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shockley, J.A., Raquet, J.F.: Navigation of ground vehicles using magnetic field variations. Navigation 61, 237–252 (2014)

    Article  Google Scholar 

  2. Canciani, A., Raquet, J.F.: Absolute positioning using the earth’s magnetic anomaly field. Navigation 63, 111–126 (2016)

    Article  Google Scholar 

  3. Johnsen, S., Lohmann, K.J.: The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005)

    Article  Google Scholar 

  4. Johnsen, S., Lohmann, K.J.: Magnetoreception in animals. Phys. Today 61, 29–35 (2008)

    Article  Google Scholar 

  5. Wiltschko, R., Wiltschko, W.: Magnetic Orientation in Animals. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  6. Knecht, D.J., Shuman, B.M.: The geomagnetic field. In: Jursa, A. (ed.) Handbook of Geophysics and the Space Environment. Air Force Geophysics Laboratory (1985)

    Google Scholar 

  7. Wajnberg, E., Acosta-Avalos, D., Alves, O.C., de Oliveria, J.F., Srygley, R.B., Esquivel, D.M.S.: Magnetoreception in eusocial insects: an update. J. R. Soc. Interface 7, S207–S225 (2010)

    Article  Google Scholar 

  8. Lohmann, K.J., Lohmann, C.M.F., Putman, N.F.: Magnetic maps in animals: nature’s GPS. J. Exp. Biol. 210, 3697–3705 (2007)

    Article  Google Scholar 

  9. Taylor, B.K., Johnsen, S., Lohmann, K.J.: Detection of magnetic field properties using distributed sensing: a computational neuroscience approach. Bioinspiration & Biomimetics 12(3), 036013 (2017)

    Article  Google Scholar 

  10. Walker, M.: On a wing and a vector: a model for magnetic navigation by homing pigeons. J. Theor. Biol. 192, 341–349 (1998)

    Article  Google Scholar 

  11. Stoddard, P.K., Mardsen, E.J., Williams, T.C.: Computer simulation of autumnal bird migration over the western north Atlantic. Animal Behav. 31, 173–180 (1983)

    Article  Google Scholar 

  12. Lohmann, K.J., Hester, J.T., Lohmann, C.M.F.: Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 11, 1–23 (1999)

    Article  Google Scholar 

  13. Goyret, J., Markwell, P.M., Raguso, R.A.: The effect of decoupling olfactory and visual stimuli on the foraging behavior of Manduca sexta. J. Exp. Biol. 210, 1398–1405 (2007)

    Article  Google Scholar 

  14. Willis, M.A., Avondet, J.L., Finnell, A.S.: Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, peripleneta americana (L.). J. Exp. Biol. 211, 2317–2326 (2008)

    Article  Google Scholar 

  15. Reppert, S.M., Gegear, R.J., Merlin, C.: Navigational mechanisms of migrating monarch butterflies. Trends Neruosci. 33, 399–406 (2008)

    Article  Google Scholar 

  16. Baker, T.C., Kuenen, L.P.S.: Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216, 424–427 (1982)

    Article  Google Scholar 

  17. Jensen, K.K.: Light-dependent orientation responses in animals can be explained by a model of compass cue integration. J. Theor. Biol. 262, 129–141 (2010)

    Article  Google Scholar 

  18. Lohmann, K.J., Putman, N.F., Lohmann, C.M.F.: The magnetic map of hatchling loggerhead sea turtles. Curr. Opin. Neurobiol. 22, 336–342 (2012)

    Article  Google Scholar 

  19. Luschi, P., et al.: The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc. R. Soc. Lond. B Biol. Sci. 265(1412), 2279–2284 (1998)

    Article  Google Scholar 

  20. Luschi, P., et al.: Marine turtles use geomagnetic cues during open-sea homing. Curr. Biol. 17(2), 126–133 (2007)

    Article  Google Scholar 

  21. Brothers, J.R., Lohmann, K.J.: Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25, 392–396 (2015)

    Article  Google Scholar 

  22. Mouritsen, H.: Spatiotemporal orientation strategies of long-distance migrants. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds.) Avian Migration, pp. 493–513. Springer, Berlin (2003)

    Chapter  Google Scholar 

  23. Painter, K.J., Hillen, T.: Individual and continuum models for homing in flowing environments. J. Royal Soc. Interface 12 (2015)

    Google Scholar 

  24. Putman, N.F., Verley, P., Shay, T.J., Lohmann, K.J.: Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model. J. Exp. Biol. 215, 1863–1870 (2012)

    Article  Google Scholar 

  25. Putman, N.F., Verley, P., Endres, C.S., Lohmann, K.J.: Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015)

    Article  Google Scholar 

  26. Putman, N.F.: Inherited magnetic maps in salmon and the role of geomagnetic change. Integrat. Comparat. Biol. 55, 396–405 (2015)

    Article  Google Scholar 

  27. Servedio et al.: Not just a theory - the utility of mathematical models in evolutionary biology. PLoS Biol. 12 (2014). doi:10.1371/journal.pbio.1002017

  28. Rutkowski, A.J.: A Biologically-inspired sensor fusion approach to tracking a wind-borne odor in three dimensions. PhD Dissertation, Case Western Reserve University (2008)

    Google Scholar 

  29. Rutter, B.L., Taylor, B.K., Bender, J.A., Blűmel, M.A., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Descending commands to an insect leg controller network cause smooth behavioral transitions. In: International Conference on Intelligent Robots and Systems, pp. 215–220 (2011)

    Google Scholar 

  30. Rutter, B.L., Taylor, B.K., Bender, J.A., Blűmel, M.A., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Sensory coupled action switching modules (SCASM) for modeling and synthesis of biologically inspired coordination. In: International Conference on Climbing and Walking Robots (2011)

    Google Scholar 

  31. Webb, B.: What does robotics offer animal behaviour? Anim. Behav. 60, 545–558 (2000)

    Article  Google Scholar 

  32. Talley, J.L.: A comparison of flying Manduca sexta and walking Periplaneta americana male tracking behavior to female sex pheromones in different flow environments. Ph.D Dissertation, Case Western Reserve University (2010)

    Google Scholar 

  33. Grasso, F.W., Consi, T.R., Mountain, D.C., Atema, J.: Biomimetic robot lobster performs chemoo-orientation in turbulence using an pair of spatially separated sensors: progress and challenges. Robot. Auton. Syst. 30, 115–131 (2000)

    Article  Google Scholar 

  34. Grasso, F.W., Atema, J.: Integration of flow and chemical sensing for guidance of autonomous marine robots in turbulent flows. Environ. Fluid Mech. 2, 95–114 (2002)

    Article  Google Scholar 

  35. Putman, N.F., Endres, C.S., Lohmann, C.M.F., Lohmann, K.J.: Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011)

    Article  Google Scholar 

  36. Postlethwaite, C.M., Walker, M.M.: A gemoetric model for initial orientation errors in pigeon navigation. J. Theor. Biol. 269, 273–279 (2011)

    Article  MATH  Google Scholar 

  37. Benhamou, S.: Bicoordinate navigation based on non-orthogonal gradient fields. J. Theor. Biol. 225(2), 235–239 (2003)

    Article  MathSciNet  Google Scholar 

  38. Benhamou, S.: How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229(2), 209–220 (2004)

    Article  MathSciNet  Google Scholar 

  39. Huang, G., Taylor, B.K., Brink, K.M., Miller, M.M.: Engineered and bioinspired magnetic navigation, Institute of Navigation Pacific Positioning, Navigation, and Timing Meeting (2017)

    Google Scholar 

  40. https://www.ndgc.noaa.gov/geomag/geomag.shtml

  41. Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill, New York (2001)

    Google Scholar 

  42. Dey, S.: Fluvial Hydrodynamics. Springer, Berlin (2014)

    Book  Google Scholar 

  43. Endres, C.S., Putman, N.F., Ernst, D.A., Kurth, J.A., Lohmann, C.M.F., Lohmann, K.J.: Modeling dual use of geomagnetic and chemical cues in island-finding. Frontiers Behav. Neurosci. 10 (2001)

    Google Scholar 

  44. Bingman, V.P., Cheng, K.: Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol. Ecol. Evol. 17, 295–318 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kevin Brink (AFRL/RWWI) for the use of his robotics laboratory for the hardware portion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Taylor, B.K., Huang, G. (2017). Bioinspired Magnetic Navigation Using Magnetic Signatures as Waypoints. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics