Skip to main content

Bioinspired Grippers for Natural Curved Surface Perching

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Perching and climbing as animals do is useful to aerial robots for extending mission life and for interacting with the physical world because flight is energetically costly. This paper presents the design and modeling of a claw or spine based gripper for perching on rough, curved surfaces. Drawing inspiration from the opposed grip techniques found in animals, we focus on the design considerations associated with surface geometry and preload. A model elucidates the relationship between these variables, and a mechanism demonstrates the effectiveness of the opposed grip technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yap, L.K.: www.flickr.com/photos/64565252@N00/453554996/. cc by 2.0

  2. Bartz, R.: Munich aka makro freak. wikimedia commons. cc by-sa 2.5

    Google Scholar 

  3. User: Lassennps. www.flickr.com/photos/lassennps/9403813124/. cc by 2.0

  4. User: Mimimiaphotography. wikimedia commons. cc by-sa 3.0

    Google Scholar 

  5. Asbeck, A.T., Cutkosky, M.R.: Designing compliant spine mechanisms for climbing. J. Mech. Robot. 4(3), 031007 (2012)

    Article  Google Scholar 

  6. Dai, Z., Gorb, S.N., Schwarz, U.: Roughness-dependent friction force of the tarsal claw system in the beetle pachnoda marginata (coleoptera, scarabaeidae). J. Exp. Biol. 205(16), 2479–2488 (2002)

    Google Scholar 

  7. Goldman, D.I., Chen, T.S., Dudek, D.M., Full, R.J.: Dynamics of rapid vertical climbing in cockroaches reveals a template. J. Exp. Biol. 209(15), 2990–3000 (2006)

    Article  Google Scholar 

  8. Jiang, H., Pope, M.T., Hawkes, E.W., Christensen, D.L., Estrada, M.A., Parlier, A., Tran, R., Cutkosky, M.R.: Modeling the dynamics of perching with opposed-grip mechanisms. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3102–3108. IEEE (2014)

    Google Scholar 

  9. Kovač, M., Germann, J., Hürzeler, C., Siegwart, R.Y., Floreano, D.: A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5(3–4), 77–91 (2009)

    Google Scholar 

  10. Lam, T.L., Xu, Y.: A novel tree-climbing robot: treebot. In: Tree Climbing Robot. Spring Tracts in Advanced Robotics, pp. 23–54. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Parness, A., Frost, M., Thatte, N., King, J.P., Witkoe, K., Nevarez, M., Garrett, M., Aghazarian, H., Kennedy, B.: Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers. J. Field Robot. 30(6), 897–915 (2013)

    Article  Google Scholar 

  12. Roderick, W.R., Cutkosky, M.R., Lentink, D.: Touchdown to take-off: at the interface of flight and surface locomotion. Interface Focus 7(1), 20160094 (2017)

    Article  Google Scholar 

  13. Spenko, M., Haynes, G.C., Saunders, J., Cutkosky, M.R., Rizzi, A.A., Full, R.J., Koditschek, D.E.: Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25(4–5), 223–242 (2008)

    Article  Google Scholar 

  14. Xu, F., Wang, B., Shen, J., Hu, J., Jiang, G.: Design and realization of the claw gripper system of a climbing robot. J. Intell. Robot. Syst. 1–17 (2017). doi:10.1007/s10846-017-0552-3

Download references

Acknowledgments

This work is supported by ARL MAST MCE 14.4; W. Roderick is supported by a NSF GRF (DGE-114747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. T. Roderick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Roderick, W.R.T., Jiang, H., Wang, S., Lentink, D., Cutkosky, M.R. (2017). Bioinspired Grippers for Natural Curved Surface Perching. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics