
An abridged version of this paper appears in the proceedings of the 37th International Cryptology
Conference—CRYPTO 2017. This is the full version.

Non-Malleable Codes for Space-Bounded Tampering

Sebastian Faust∗,1, Kristina Hostáková∗,1, Pratyay Mukherjee†,2, and Daniele Venturi‡,3

1Ruhr-Universität Bochum, Bochum, Germany
2Visa Research, Palo Alto, USA

3Sapienza University of Rome, Rome, Italy

June 6, 2017

Abstract

Non-malleable codes—introduced by Dziembowski, Pietrzak and Wichs at ICS 2010—
are key-less coding schemes in which mauling attempts to an encoding of a given message,
w.r.t. some class of tampering adversaries, result in a decoded value that is either identical or
unrelated to the original message. Such codes are very useful for protecting arbitrary crypto-
graphic primitives against tampering attacks against the memory. Clearly, non-malleability
is hopeless if the class of tampering adversaries includes the decoding and encoding algo-
rithm. To circumvent this obstacle, the majority of past research focused on designing
non-malleable codes for various tampering classes, albeit assuming that the adversary is
unable to decode. Nonetheless, in many concrete settings, this assumption is not realistic.

In this paper, we explore one particular such scenario where the class of tampering
adversaries naturally includes the decoding (but not the encoding) algorithm. In particular,
we consider the class of adversaries that are restricted in terms of memory/space. Our main
contributions can be summarized as follows:

• We initiate a general study of non-malleable codes resisting space-bounded tampering.
In our model, the encoding procedure requires large space, but decoding can be done in
small space, and thus can be also performed by the adversary. Unfortunately, in such a
setting it is impossible to achieve non-malleability in the standard sense, and we need
to aim for slightly weaker security guarantees. In a nutshell, our main notion (dubbed
leaky space-bounded non-malleability) ensures that this is the best the adversary can
do, in that space-bounded tampering attacks can be simulated given a small amount
of leakage on the encoded value.

• We provide a simple construction of a leaky space-bounded non-malleable code. Our
scheme is based on any Proof of Space (PoS)—a concept recently put forward by
Ateniese et al. (SCN 2014) and Dziembowski et al. (CRYPTO 2015)—satisfying a

∗Funded by the Emmy Noether Program FA 1320/1-1 of the German Research Foundation (DFG).
†Part of this work was done when the author was a Post-doctoral Employee at University of California,

Berkeley, supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-
15-1-0274, NSF CRII Award 1464397, AFOSR YIP Award and research grants by the Okawa Foundation and
Visa Inc. The views expressed are those of the author and do not reflect the official policy or position of the
funding agencies.
‡Partially supported by the European Unions Horizon 2020 research and innovation programme, under grant

agreement No. 644666, and by CINI Cybersecurity National Laboratory within the project FilieraSicura: Securing
the Supply Chain of Domestic Critical Infrastructures from Cyber Attacks (www.filierasicura.it), funded by
CISCO Systems Inc. and Leonardo SpA.

www.filierasicura.it

variant of soundness. As we show, our paradigm can be instantiated by extending
the analysis of the PoS construction by Ren and Devadas (TCC 2016-A), based on
so-called stacks of localized expander graphs.

• Finally, we show that our flavor of non-malleability yields a natural security guarantee
against memory tampering attacks, where one can trade a small amount of leakage on
the secret key for protection against space-bounded tampering attacks.

Contents

1 Introduction 1
1.1 Our Contribution 2
1.2 Additional Related Work 4

2 Preliminaries 4
2.1 Notation 4
2.2 Coding Schemes 5

3 Non-Malleability in Bounded
Space 6
3.1 Space-Bounded Tampering 6
3.2 Achievable Parameters 8

4 Building Blocks 10
4.1 Random Oracles 10
4.2 Merkle Commitments 11
4.3 Graph Pebbling and Labeling . . 12

5 Non-Interactive Proofs of Space 15
5.1 NIPoS Definition 15
5.2 NIPoS Construction 16
5.3 Security Analysis 17

6 Our Coding Scheme 22
6.1 Code Construction 22
6.2 Proof of Security 22
6.3 Concrete Instantiation and Pa-

rameters 26

7 Trading Leakage for Tamper-Proof
Security 26
7.1 Leaky Tamper Simulatability . . 26
7.2 Analysis 28

1 Introduction

Non-malleable codes (NMC) [21] were originally proposed by Dziembowski, Pietrzak and Wichs
[21] in 2010 and have since been studied intensively by the research community (see, e.g., [35,
25, 13, 26, 33, 1, 10] for some examples). Such codes are an extension of the concept of error cor-
rection and detection and can guarantee the integrity of a message in the presence of tampering
attacks when error correction/detection may not be possible. Informally, a non-malleable code
(Encode,Decode) guarantees that a codeword modified via an algorithm A, from some class A
of allowed tampering attacks,1 either encodes the original message, or a completely unrelated
value. Notice that non-malleable codes do not need to correct or detect errors. This relaxation
enables us to design codes that resist much broader tampering classes A than what is possible
to achieve for error correcting/detecting codes. As an illustrative example, it is trivial to con-
struct non-malleable codes for the class of constant tampering functions; that is, e.g., functions
that replace the codeword by a different but valid codeword. Clearly, the output of a constant
tampering function is independent of the original encoded message, and hence satisfies the non-
malleability property. On the other hand, it is impossible to achieve error correction/detection
against such tampering classes, as by definition valid codewords do not contain errors.

Applications of non-malleable codes. The fact that non-malleable codes can be built for
broader tampering classes makes them particularly attractive as a mechanism for protecting
the memory of physical devices from tampering attacks [8, 3]. To protect a cryptographic
functionality F against tampering with respect to a class of attacks A applied to a secret key
κ that is stored in memory, we can proceed as follows. Instead of storing κ directly in memory,
we use a non-malleable code for A, and store the codeword c ← Encode(κ). Thus, each time
when F wants to access κ, we first decode κ̃ = Decode(c), and, only if Decode(c) 6= ⊥, we run
F(κ̃, ·) on any input of our choice. Intuitively, as long as the adversary can only apply tampering
attacks from the class A, non-malleability of (Encode,Decode) guarantees that any tampering
results into a key that is unrelated to the original key, and hence the output of F does not
reveal information about the original secret key. For further discussion on the application of
non-malleable codes to tamper resilience we refer the reader to [21].

The tampering class A. It is impossible to have codes that are non-malleable for all possible
(efficient) tampering algorithms A. For instance, if A contains the composition of Encode and
Decode, then given a codeword c the adversary can apply a tampering algorithm A that first
decodes c to get the encoded value x; then, e.g., it flips the first bit of x to obtain x̃, and
re-encodes x̃. Clearly, such an attack results into x̃ that is related to the original value x,
and non-malleability is violated. A major research direction is hence to design non-malleable
codes for broad classes of tampering attacks that exclude the above obvious attacks. Prominent
examples are bit-wise tampering [21], where the adversary can modify each bit of the codeword
individually, split-state tampering [2], where the codeword consists of two (possibly large) parts
that can be tampered with individually, and tampering functions with bounded complexity [27].

All the above mentioned classes of attacks have in common that the Decode algorithm is not
part of A. Indeed, if we want to achieve non-malleability, then we must have that Decode /∈ A,
as otherwise the following attack becomes possible. Let A be the tampering algorithm that first
decodes the codeword c to get the encoded value x, and then, depending on the first bit b of x, it
overwrites c with cb, where Decode(c0) 6= Decode(c1). In this work, we aim at codes that achieve
a weaker security guarantee than standard non-malleability, but for the first time can protect

1Sometimes, the tampering algorithms are also called tampering functions.

1

the security of cryptographic functionalities F with respect to a class of tampering attacks A
with Decode ∈ A.

On the importance of Decode ∈ A. Besides being an obvious extension of the class of tam-
pering attacks for which we can design non-malleable codes (albeit achieving a weaker security
guarantee, which we will outline in Section 1.1), allowing that Decode ∈ A has some important
advantages for cryptographic applications, as emphasized by the following example. Consider a
physical device storing an encoded key Encode(κ) in memory, and implementing a cryptographic
functionality F . If the device attempts to implement the cryptographic functionality F , then
whenever it is executed, it has to run the Decode function to recover the original secret key κ
before running F(κ, ·). Suppose that a malicious piece of software A, e.g., a virus, infects the
device and attempts to learn information about the secret key κ. Clearly, once A infects the
device, it may use the resources available on the device itself, which in particular have to be
sufficient to run the Decode algorithm. Hence, if we view the virus A as the tampering algorithm,
to maintain the functionality of the device (which in particular requires to run Decode) and at
the same time to allow the virus A to control the resources of attacked device, it is necessary
that Decode ∈ A.2 Our main contribution is to design non-malleable codes that can guarantee
meaningful security in the above described setting. We provide more details on our results in
the next section.

1.1 Our Contribution

Leaky non-malleable codes. The standard non-malleability property guarantees that de-
coding the tampered codeword reveals nothing about the original encoded message x. Formally,
this is modelled by a simulation-based argument, where we consider the following tampering
experiment. First, the message x gets encoded to c ← Encode(x) and the adversary can apply
a tampering algorithm A ∈ A resulting in a modified codeword c̃; the output of the tampering
experiment is then defined as Decode(c̃). Roughly speaking, non-malleability is guaranteed if we
can construct an (efficient) simulator S that can produce a distribution that is (computationally)
indistinguishable from the output of the tampering experiment, without having access to x; the
simulator is typically allowed to return a special symbol same? to signal that (it believes) the
adversarial tampering did not modify the encoded message.

As explained above, if Decode ∈ A, then the above notion is trivially impossible to achieve,
since the adversary can easily learn O(log k) bits, where k is the size of the message.3 In this
work, we introduce a new notion that we call leaky non-malleability, which models the fact that,
when A ∈ A, the adversary is allowed to learn some (bounded) amount of information about
the message x. Formally, we give the simulator S additional access to a leakage oracle; more
concretely, this means that in order to simulate the output of the tampering experiment, S can
specify a leakage function L : {0, 1}k → {0, 1}` and receive L(x).4 Clearly, if ` = k, then the
simulation is trivial, and hence our aim is to design codes where ` is as close as possible to
the necessary bound of O(log k). Notice that, due to the allowed leakage, our notion of leaky
non-malleability makes most sense when the message x is sampled from a distribution of high
min-entropy. But, indeed, this is the case in the main application of NMC, where the goal is to

2In particular, when resources are measured by space as considered in this work, assuming that running Decode
requires more space than what is available on the device would imply assuming a trusted part of memory that
the virus cannot exploit, which seems unnatural.

3For instance, the adversary may just guess the first O(log k) bits of the message and replace c with cu (where
u ∈ {0, 1}O(log k)) depending on whether its guess was correct; this attack succeeds with non-negligible probability.

4Although, later in the paper, we define leaky non-malleability only for the case of space-bounded tampering,
we point out that this weaker security guarantee makes sense for arbitrary tampering classes A.

2

protect a secret key of a cryptographic scheme; and in fact, as we show at the end of the paper,
leaky non-malleability still allows to guarantee protection against memory tampering in many
interesting cases.

Modelling space-bounded tampering adversaries. In the above application with the
virus, we allow the virus to use all resources of the device when it tampers with the codeword.
Of course, this means that the virus is limited in the amount of space it can use. We exploit
this observation by putting forward the notion of non-malleable codes that resist adversaries
operating in bounded space. That is, in contrast to earlier works on NMC, we do not require any
independence of the tampering (like, e.g., in the split-state model), nor the fact that tampering
comes from a restricted complexity class. Instead, we allow arbitrary efficient tampering attacks
that can globally modify the codeword, as long as the attacks operate in the space available on
the device. Since the lower bounds in space complexity are notoriously hard, we follow earlier
works [20, 19, 4, 18] that argue about space-bounded adversaries (albeit in a different setting),
using the random oracle methodology and its connection to graph pebbling games.

Let us provide some more details on our model. Our setting follows the earlier work of
Dziembowski, Kazana and Wichs [20, 19] and considers a “big adversary” B that has unlimited
space (though runs in PPT) and creates “small adversaries” A (e.g., viruses) that it sends to the
device. On the device, A can use the available space to modify the codeword in some arbitrary
way. We emphasize that A has no granular restrictions, and hence can read the entire codeword.
Moreover, it can follow an arbitrary efficient (PPT) tampering strategy. The only restriction is
that A has to operate in bounded space. Both adversaries A and B have access to a random oracle
H. After A has finished its tampering attack, we proceed as in the normal NMC experiment, i.e.,
we decode the modified codeword and output the result. We further strengthen our definition
by allowing the adversary to repeat the above attack multiple times, which is sometimes referred
to as continuous tampering [25, 33]. We note that, as in [33], we require an a-priori fixed upper
bound on the number of viruses A that B can adaptively choose.

Technical overview of our construction. Our construction is based on Proofs of Space
(a.k.a. PoS), introduced in [4, 18]. First, let us recall the notion of PoS briefly. In a PoS
protocol, a prover P proves that “it has sufficient space” available to a space-bounded verifier
V. Using the Fiat-Shamir [29] transformation, the entire proof can be presented by πid for
some identity id . The verifier can verify the pair (id , πid) within bounded space (say s). The
soundness guarantee is that a cheating prover, with overwhelming probability, can not produce
a correct proof unless it uses a large amount of space. Our NMC construction encodes a value
x ∈ {0, 1}k by setting id := x and then computing the proof πid . Hence, the codeword is
c = (x, πx). Decoding is done just by running the verification procedure of the PoS.

Now, if the codeword is stored in an s-bounded device, then decoding is possible within
the available space whereas encoding is not – in particular, even if the adversary can obtain
x, it can not re-encode to a related value, say (x + 1, πx+1), as guaranteed by the soundness
of the underlying PoS.5 We stress that our soundness requirement is slightly different than the
existing PoS constructions, as we require some form of “extractability” from the PoS: Given an
honestly generated pair (x, πx), if the space-bounded virus can compute a valid pair (x′, πx′)
where x′ 6= x, then one can efficiently extract x′ from the set of random oracle queries that the
big adversary made before installing the virus. Our put differently, the only way to compute a
valid proof is to overwrite (x, πx) with a valid pair (x′, πx′) “pre-computed” by the big adversary.

To formally prove the leaky non-malleability of our construction, we need to show that the
5Notice that since the space-bounded attacker A is able to decode anyway, we do not aim to hide x in c.

3

output of the tampering experiment can be simulated given only “limited” leakage on x. For
simplicity, let us explain how this can be done for one tampering query. Intuitively this is
possible because the big adversary can hard-code at most polynomially many (say q) correct
pairs {xi, πxi}i∈[q] into the virus. Now, since any such xi 6= x can be efficiently “extracted”
from the random oracle queries made by B prior to choosing the virus, log(q) bits of leakage
are sufficient to compute the exact xi from the list {xi}i∈[q].6 For multiple adaptive tampering
queries things get more complicated. Nonetheless, we are able to show that each such query can
be simulated by logarithmic leakage.

We emphasize that our encoding scheme is deterministic for a fixed choice of the random
oracle. In particular, the only randomness comes from the random oracle itself. Also, in the
security proof, we do not require to program the random oracle in the on-line phase of the
security reduction, in that the random oracle can just be fixed at the beginning of the security
game.7. We concretely instantiate our construction by adapting the PoS protocol from Ren and
Devadas [40], that uses so-called stacks of localized expander graphs.

Applications: Trading leakage for tamper resilience. One may ask if our notion of leaky
non-malleability is useful for the original application of tamper protection. In Section 7 we
show that cryptographic primitives which remain secure if the adversary obtains some bounded
amount of leakage from the key, can naturally be protected against tampering attacks using
our new notion of leaky non-malleability. Since there is a large body of work on bounded
leakage-resilient cryptographic primitives, including signature schemes, symmetric and public
key encryption [32, 16, 34, 38, 39, 22, 23], and many more, our transformation protects these
primitives against any efficient space-bounded tampering attack.

1.2 Additional Related Work

Only very few works consider non-malleable codes for global tampering functions [5]. Very
related to our attack model are in particular the works of Dziembowski, Kazana and Wichs [20,
19]. In these works, the authors also consider a setting where a so-called “big-adversary” infects
a machine with a space-bounded “small adversary”. Using techniques from graph pebbling, the
authors show how to construct one-time computable functions [20] and leakage resilient key
evolution schemes [19] when the “small adversary” has to operate in bounded space.

The flavor of non-malleable codes in which there is an a-priory upper bound on the total
number of tampering queries, without self-destruct, was originally considered in [9]. This concept
has a natural application to the setting of bounded tamper resilience (see, e.g., [15, 14, 24]).

For other related works on non-malleable codes and its applications we refer to [37].

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number of elements
in X . When x is chosen randomly in X , we write x ← X . When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is probabilistic, then y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A

6In slightly more detail, the set {xi}i∈[q] can be extracted by the simulator outside the leakage oracle as it
does not depend on x, so the simulator can just ask for the index of the exact xi to later reconstruct xi in full.

7Since adaptive (i.e. on-line) programming is not required, for all practical purposes our construction can
be instantiated by standard hash functions like SHA-1. However, our proof crucially relies on the ability of the
simulator to control the random oracle (albeit non adaptively), in order to make the “extraction” work.

4

is probabilistic polynomial-time (PPT) if A is probabilistic and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most a polynomial (in the input size) number of steps.
We often consider algorithms AO(·), with access to an oracle O(·).

We denote with λ ∈ N the security parameter. A function ν : N → [0, 1] is negligible in
the security parameter (or simply negligible), denoted ν(λ) ∈ negl(λ), if it vanishes faster than
the inverse of any polynomial in λ, i.e. ν(λ) = λ−ω(1). A function µ : N → R is a polynomial
in the security parameter, written µ(λ) ∈ poly(λ), if, for an arbitrary constant c > 0, we have
µ(λ) ∈ O(λc).

2.2 Coding Schemes

We recall the standard notion of a coding scheme for binary messages.

Definition 1 (Coding scheme). A (k, n)-code Π = (Init,Encode,Decode) is a triple of algorithms
specified as follows: (i) The (randomized) generation algorithm Init takes as input λ ∈ N and
returns public parameters ω ∈ {0, 1}∗; (ii) The (randomized) encoding algorithm Encode takes as
input hard-wired public parameters ω ∈ {0, 1}∗ and a value x ∈ {0, 1}k, and returns a codeword
c ∈ {0, 1}n; (iii) The (deterministic) decoding algorithm Decode takes as input hard-wired public
parameters ω ∈ {0, 1}∗ and a codeword c ∈ {0, 1}n, and outputs a value in {0, 1}k ∪{⊥}, where
⊥ denotes an invalid codeword.

We say that Π satisfies correctness if for all ω ∈ {0, 1}∗ output by Init(1λ) and for all
x ∈ {0, 1}k, Decodeω(Encodeω(x)) = x with overwhelming probability over the randomness of
the encoding algorithm.

In this paper we will be interested in modelling coding schemes where there is an explicit
bound on the space complexity required to decode a given codeword.

Definition 2 (Time/space-bounded algorithm). Let A be an algorithm. For any s, t ∈ N we say
that A is s-space bounded and t-time bounded (or simply (s, t)-bounded) if at any time during
its execution the entire state of A can be described by at most s bits and A runs for at most t
time-steps.

For such algorithms we have sA ≤ s and tA ≤ t (with the obvious meaning). We often
omit the time parameter and simply say that A is s-bounded, which means that A is an s-
bounded polynomial-time algorithm. Given an input x ∈ {0, 1}n, and an initial configuration
σ ∈ {0, 1}s−n, we write (y, σ̃) := A(x;σ) for the output y of A including its final configuration
σ̃ ∈ {0, 1}s−n. The class of all s-space bounded deterministic polynomial-time algorithms is
denoted by Asspace.

We stress that, similarly to previous works [20, 19], in case A is modelled as a Turing machine,
we count the length of the input tape and the position of all the tape heads within the space
bound s. However we emphasize that, although A is space-bounded, we allow to hard-wire
auxiliary information of arbitrary polynomial length in its description that is not accounted
for in the space-bound. Intuitively, a coding scheme can be decoded in bounded space if the
decoding algorithm is space bounded.

Definition 3 (Space-bounded decoding). Let Π = (Init,Encode,Decode) be a (k, n)-code, and
d ∈ N. We call Π a (k, n)-code with d-bounded decoding, if for all ω output by Init(1λ) the
decoding algorithm Decodeω(·) is d-bounded.

Notice that we do not count the length of the public parameters in the space bound; this is
because the value ω is hard-coded into the description of the encoding and decoding algorithms.

5

3 Non-Malleability in Bounded Space

In this paper we consider non-malleable codes against the class of tampering attacks that are
modelled as s-bounded efficient algorithms, for some parameter s ∈ N (cf. Definition 2). Our
model is motivated by the fact that a tampering attempt against a codeword, stored in some
memory-constrained device, cannot use more space than the total amount of space available on
the device itself. We define our model formally in Section 3.1, whereas in Section 3.2 we state
simple bounds on the achievable range for the parameters in our definition.

3.1 Space-Bounded Tampering

The standard way of formalizing the non-malleability property is to require that, for any “allowed
adversary”8 A, tampering with an honestly computed target encoding of some value x ∈ {0, 1}k,
there exists an efficient simulator S that is able to emulate the outcome of the decoding algorithm
on the tampered codeword, without knowing x. The simulator is allowed to return a special
symbol same?, signalling that (it believes) the adversary did not modify the value x contained
in the original encoding.

Below, we formalize non-malleability in the case where the set of allowed adversaries consists
of all efficient s-bounded algorithms, for some parameter s ∈ N (cf. Definition 2). However, since
we are particularly interested in decoding algorithms that are d-bounded for some value d ≤ s,
the standard notion of non-malleability is impossible to achieve, as in such a case the algorithm
A can simply decode the tampered codeword and leak some information on the encoded message
via tampering (see also the discussion in Section 3.2). To overcome this obstacle, we will give
the simulator S some extra-power, in that S will additionally be allowed to obtain some limited
amount of information on x in order to simulate the view of A. To capture this, we introduce
an oracle O`,xleak that can be queried in order to retrieve up-to ` bits of information about x.

Definition 4 (Leakage oracle). A leakage oracle O`,xleak is a stateful oracle that maintains a
counter ctr that is initially set to 0. The oracle is parametrized by a string x ∈ {0, 1}k and
a value ` ∈ N. When O`,xleak is invoked on a polynomial-time computable leakage function L,
the value L(x) is computed, its length is added to ctr, and if ctr ≤ `, then L(x) is returned;
otherwise, ⊥ is returned.

Since our main construction is in the random oracle model (a.k.a. ROM), we will define space-
bounded non-malleability explicitly for this setting. Recall that in the ROM a hash function
H(·) is modelled as an external oracle implementing a random function, which can be queried
by all algorithms (including the adversary); in the simulation, the simulator S simulates the
random oracle. We introduce the notion of a tampering oracle, which essentially corresponds to
repeated (adaptive) tampering with a target n-bit codeword, using at most s bits of total space.
Below, we consider that the total space of length s is split into two parts: (i) Persistent space
of length p, that also stores the codeword of length n, and that is never erased by the oracle;
and (ii) Transient (or non-persistent) space, of length s − p, that is erased by the oracle after
every tampering. Looking ahead, in our tampering application (cf. Section 7), the persistent
space corresponds to the user’s hard-drive (storing arbitrary data), while the transient space
corresponds to the transient memory available on the device.

Definition 5 (Space-bounded tampering oracle). A space-bounded tampering oracle OΠ,x,ω,s,p
cnm

is a stateful oracle parameterized by a (k, n)-code Π = (InitH,EncodeH,DecodeH), a string
8The adversary is often referred to as the “tampering function”; however, for our purposes, it is more convenient

to think of the tampering function as an algorithm.

6

x ∈ {0, 1}k, public parameters ω ∈ {0, 1}∗, and values s, p ∈ N (with s ≥ p ≥ n). The oracle
has an initial state st := (c, σ), where c ← EncodeHω (x), and σ := σ0||σ1 := 0p−n||0s−p. Hence,
upon input a deterministic algorithm A ∈ Asspace, the output of the oracle is defined as follows.

Oracle OΠ,x,ω,s,p
cnm (A):

Parse st = (c, σ0, σ1)
Let (c̃, σ̃0, σ̃1) := AH(c;σ0||σ1)
Return x̃ := DecodeHω (c̃)
Update st := (c̃, σ̃0, 0

s−p).

Notice that in the definition above we put space restrictions only on the tampering algorithm
A. The oracle itself is space unbounded. In particular, this means that even if the decoding
algorithm requires more space than s, the oracle is well defined. Moreover, this allows us to
assume that the auxiliary persistent space σ̃0 is never erased/overwritten by the oracle.

Furthermore, each algorithm A takes as input a codeword c̃ which is the result of the previous
tampering attempt. In the literature, this setting is sometimes called persistent continuous
tampering [33]. However, a closer look into our setting reveals that the model is actually quite
different. Note that, the auxiliary persistent space σ0 (that is the persistent space left after
storing the codeword) can be used to copy parts of the original encoding, that thus can be
mauled multiple times. (In fact, as we show in Section 3.2, if p = 2n, the above oracle actually
allows for non-persistent tampering as considered in [33, 25].)

In the definition of non-malleability we will require that the output of the above tampering
oracle can be simulated given only ` bits of leakage on the input x. We formalize this through
a simulation oracle, which we define below.

Definition 6 (Simulation oracle). A simulation oracle OS2,`,x,s,ω
sim is an oracle parametrized by

a stateful PPT algorithm S2, values `, s ∈ N, some string x ∈ {0, 1}k, and public parameters
ω ∈ {0, 1}∗. Upon input a deterministic algorithm A ∈ Asspace, the output of the oracle is defined
as follows.

Oracle OS2,`,x,s,ω
sim (A):

Let x̃← S
O`,xleak(·)
2 (1λ, ω,A)

If x̃ = same?, set x̃ = x
Return x̃.

We are now ready to define our main notion of continuous non-malleability under space-
bounded tampering.

Definition 7 (Space-bounded continuous non-malleability). Let H be a hash function modelled
as a random oracle, and let Π = (InitH,EncodeH,DecodeH) be a (k, n)-code. For parameters
`, s, p, θ, d ∈ N, with s ≥ p ≥ n, we say that Π is an `-leaky (s, p)-space-bounded θ-continuously
non-malleable code with d-bounded decoding ((`, s, p, θ, d)-SP-NMC for short) in the ROM, if
it satisfies the following conditions.

• Space-bounded decoding: The decoding algorithm DecodeH is d-bounded.

• Non-malleability: For all PPT distinguishers D, there exists a PPT simulator S =
(S1, S2) such that for all values x ∈ {0, 1}k there is a negligible function ν : N → [0, 1]
satisfying∣∣Pr

[
DH(·),OΠ,x,ω,s,p

cnm (·)(ω) = 1 : ω ← InitH(1λ)
]

− Pr
[
DS1(·),OS2,`,x,s,ω

sim (·)(ω) = 1 : ω ← InitS1(1λ)
] ∣∣ ≤ ν(λ),

7

where D asks at most θ queries to Ocnm. The probability is taken over the choice of the
random oracle H, the sampling of the initial state for the oracle Ocnm, and the random
coin tosses of D and S = (S1,S2).

Intuitively, in the above definition algorithm S1 takes care of simulating random oracle
queries, whereas S2 takes care of simulating the answer to tampering queries. Typically, S1 and
S2 are allowed to share a state, but we do not explicitly write this for simplifying notation. For
readers familiar with the notion of non-malleable codes in the common reference string model
(see, e.g., [35, 25]), we note that the simulator is not required to program the public parameters
(but is instead allowed to program the random oracle).9

Remark 1. Note that we consider the space-bounded adversary A as deterministic; this is without
loss of generality, as the distinguisher D can always hard-wire the “best randomness” directly into
A. Also, A does not explicitly take the public parameters ω as input; this is also without loss of
generality, as D can always hard-wire ω in the description of A.

3.2 Achievable Parameters

d e+ d

n
n+ k

2n

s =
p

s

p undefined
` > 0
` = 0

impossible

Figure 1: Possible values for the parameters s, p ∈ N in
the definition of leaky space-bounded non-malleability, for
fixed values of k, n, d (assuming d < 2n); in the picture,
“impossible” means for θ ≥ k and for non-trivial values of
`, and e is the space bound for the encoding algorithm.

We now make a few remarks on
our definition of space-bounded
non-malleability, and further in-
vestigate for which range of the
parameters s (total space avail-
able for tampering), p (persis-
tent space available for tampering),
θ (number of adaptive tampering
queries), d (space required for de-
coding), and ` (leakage bound),
our notion is achievable. Let
Π = (InitH,EncodeH,DecodeH) be
a (k, n)-code in the ROM.10 First,
note that leaky space-bounded non-
malleability is trivial to achieve
whenever ` = k (or ` = k − ε, for
ε ∈ O(log λ)); this is because, for
such values of the leakage bound,

the simulator can simply obtain the input message x ∈ {0, 1}k, in which case the security
guarantee becomes useless. Second, the larger the values of s and θ, the larger is the class of
tampering attacks and the number of tampering attempts that the underlying code can tolerate.
So, the challenge is to construct coding schemes tolerating a large space bound in the presence
of “many” tampering attempts, using “small” leakage.

An important feature that will be useful for characterizing the range of achievable parameters
in our definition is the so-called self-destruct capability, which determines the behavior of the
decoding algorithm after an invalid codeword is ever processed. In particular, a code with the
self-destruct capability is such that the decoding algorithm always outputs ⊥ after the first ⊥ is
ever returned (i.e., after the first invalid codeword is ever decoded). Such a feature, which was
already essential in previous works studying continuously non-malleable codes [25, 12, 11], can

9However, we stress that in the proof of our code construction (cf. Section 6), we do not need adaptive random
oracle programming.

10The discussion below applies also to codes not relying on random oracles.

8

be engineered by enabling the decoding function to overwrite the entire memory content with a
fixed string, say the all-zero string if a codeword is decoded to ⊥.

Depending on the self-destruct capability being available or not, we have the following natural
observations:

• If Π is not allowed to self-destruct, it is impossible to achieve space-bounded non-malle-
ability, for non-trivial values of `, whenever θ ≥ n (for any s ≥ p ≥ n, and any d ∈ N).
This can be seen by considering the deterministic algorithm Aiauxi (for some i ∈ [n]) that
overwrites the first i−1 bits of the input codeword with the values auxi := (c[1], . . . , c[i−1]),
and additionally sets the i-th bit to 0 (leaving the other bits unchanged). Using such an
algorithm, a PPT distinguisher D can guess the bit c[i] of the target codeword to be either
0 (in case the tampering oracle returned the input message x) or 1 (in case the tampering
oracle returned a value different from x, namely ⊥). Hence, D returns 1 if and only if
DecodeHω (c) = x.

The same attack was already formally analyzed in [12] (generalizing a previous attack by
Gennaro et al. [31]); it suffices to note here that the above attack can be mounted using
s = n bits of space (which are needed for processing the input encoding), and requires
θ = n tampering attempts.

• Even if Π is allowed to self-destruct, whenever s ≥ d and p ≥ n+θ−1, leaky space-bounded
non-malleability requires ` ≥ θ. This can be seen by considering the following attack. An
s-bounded algorithm A1

c0,c1 , with hard-wired two valid encodings c0, c1 ∈ {0, 1}n of two
distinct messages x0, x1 ∈ {0, 1}k does the following: (i) Decodes c obtaining x (which
requires d ≤ s bits of space); (ii) Stores the first θ − 1 bits of x in the persistent storage
σ̃0; (iii) If the θ-th bit of x is one, it replaces c with c̃ = c1, else it replaces c with c̃ = c0.
During the next tampering query, D can specify an algorithm A2

c0,c1 that overwrites the
target encoding with either c0 or c1 depending on the first11 bit of σ̃0 being zero or one,
and so on until the first θ − 1 bits of x are leaked. So in total, it is able to leak at least θ
bits of x (including the θ-th bit of x leaked by A1).

• The previous attack clearly implies that it is impossible to achieve leaky space-bounded
non-malleability, for non-trivial values of `, whenever s ≥ d, θ = k, and p ≥ n+ k − ε, for
ε ∈ O(log λ). A simple variant of the above attack, where essentially D aims at leaking
the target encoding c instead of the input x, yields a similar impossibility result whenever
s ≥ p, d ∈ N, θ = n, and p ≥ 2n− ε, for ε ∈ O(log λ).

The above discussion is summarized in the following theorem (see also Fig. 1 for a pictorial
representation).

Theorem 1. Let `, s, p, θ, d, k, n ∈ N be functions of the security parameter λ ∈ N. The following
holds:

(i) No (k, n)-code Π without the self-destruct capability can be an (`, s, p, θ, d)-SP-NMC for
d ∈ N, s ≥ p ≥ n and ` = n− µ, where µ ∈ ω(log λ).

(ii) For any 1 ≤ θ < k, if Π is a (k, n)-code (with or without the self-destruct capability) that
is an (`, s, p, θ, d)-SP-NMC for d ∈ N, s ≥ d and p ≥ n+ θ − 1, then ` ≥ θ.

11Recall that the tampering oracle of Definition 5 initializes the persistent space σ0 used by the current
tampering algorithm, with the corresponding final state σ̃0 returned by the previous tampering algorithm.

9

(iii) No (k, n)-code Π (even with the self-destruct capability) can be an (`, s, p, θ, d)-SP-NMC
for d ∈ N, ` = n− µ, with µ ∈ ω(log λ), where, for ε ∈ O(log λ),

s ≥ d θ ≥ k p ≥ n+ k − ε
or s ≥ p θ ≥ n p ≥ 2n− ε.

Remark 2. We emphasize that our coding scheme (cf. Section 6) does not rely on any self-
destruct mechanism, and achieves θ ≈ k/ log λ for non-trivial values of the leakage parameter.
This leaves open the question to construct a code relying on the self-destruct capability, that
achieves security for any θ ∈ poly(λ) and for non-trivial leakage, with parameters s, p, d consis-
tent with the above theorem. We leave this as an interesting direction for future research.

4 Building Blocks

In this section we define the main cryptographic primitives on which we base our construction
later. We start by putting forward a few conventions about random oracles, in Section 4.1, and
by recalling the standard properties of Merkle trees, in Section 4.2. Then, in Section 4.3, we
define a few concepts related to random-oracle labeling of directed acyclic graphs.

4.1 Random Oracles

All our results are in the random oracle model (ROM). Therefore we first discuss some basic con-
ventions and definitions related to random oracles. First, recall that in the ROM, at setup, a hash
functionH is sampled uniformly at random, and all algorithms, including the adversary, are given
oracle access to H (unless stated otherwise). For instance, we let Π = (InitH,EncodeH,DecodeH)
be a coding scheme in the ROM. Second, without loss of generality, we will always consider a
random oracle H with a type H : {0, 1}∗ → {0, 1}nH .

We emphasize that unlike many other proofs in the ROM, we will not need the full pro-
grammability of random oracles. In fact, looking ahead, in the security proof of our code
construction from Section 6, we can just assume that the random oracle is non-adaptively pro-
grammable as defined in [6].12 The basic idea is that the simulator/reduction samples a partially
defined “random-looking function” at the beginning of the security game, and uses that function
as the random oracle H. In particular, by fixing a function ahead of time, the reduction fixes all
future responses to random oracle calls—this is in contrast to programmable random oracles,
which allow the simulator to choose random values adaptively in the game, and also to program
the output of the oracle in a convenient manner.

For any string x, and any random oracle H, we use the notation Hx to denote the specialized
random oracle that accepts only inputs with prefix equal to x. We additionally make the
following conventions:

• Query Tables. Random oracle queries are stored in query tables. Let QH be such a
table. QH is initialized as QH := ∅. Hence, when H is queried on a value u, a new tuple
(I(u), u,H(u)) is appended to the table QH where I : {0, 1}∗ → {0, 1}O(log λ) is an injective
function that maps each input u to a unique identifier, represented in bits. Clearly, for
any tuple (i, u,H(u)) we have that I−1(i) = u.

• Input Field. Let QH = ((i1, u1, v1), · · · , (iq, uq, vq)) be a query table. The input field
IPQH of QH is defined as the tuple IPQH = (u1, . . . , uq).

12In [6], the authors show that such random oracles are equivalent to non-programmable ones, as defined in [30].

10

4.2 Merkle Commitments

Merkle Commitment

MGenH(1λ): Output ωcm := ∅.

MCommitHωcm
(z0, . . . , zN−1): Output ψ := RootH(N, (z0, . . . , zN−1)).

MOpenHωcm
((z0, . . . , zN−1), i):

• If i ≡ 0 mod 2 then φ1 := zi+1; else φ1 := zi−1.

• For j = 2 to log(N) do

– i := i div 2

– If i ≡ 0 mod 2 then φj := RootH(2j−1, (z(i+1)2j−1 , . . . , z(i+2)2j−1−1));
else φj := RootH(2j−1, (z(i−1)2j−1 , . . . , zi2j−1−1)).

• Output (zi, (φ1, . . . , φlogN)).

MVerHωcm
(i, ψ, (z, (φ1, . . . , φlogN))):

• If i ≡ 0 mod 2 then ψ′ := H(z||φ1); else ψ′ := H(φ1||z).
• For j = 2 to log(N) do

– i := i div 2

– If i ≡ 0 mod 2 then ψ′ := H(ψ′||φj); else ψ′ := H(φj ||ψ′).
• If ψ = ψ′ then output 1, otherwise output 0.

Figure 2: Construction of a Merkle commitment scheme

A Merkle commitment is a special type of commitment scheme13 exploiting so-called hash
trees [36]. Intuitively, a Merkle commitment allows a sender to commit to a vector of N elements
z := (z1, . . . , zN) using N − 1 invocations of a hash function. At a later point, the sender can
open any of the values zi, by providing a succinct certificate of size logarithmic in N .

Definition 8 (Merkle commitment). A (k, ncm, N, nop, νmt)-Merkle commitment scheme (or MC
scheme) in the ROM is a tuple of algorithms (MGenH,MCommitH,MOpenH,MVerH) described
as follows.

• MGenH(1λ): On input the security parameter, the randomized algorithm outputs public
parameters ωcm ∈ {0, 1}∗.

• MCommitHωcm
(z): On input the public parameters and an N -tuple z = (z1, . . . , zN), where

zi ∈ {0, 1}k, this algorithm outputs a commitment ψ ∈ {0, 1}ncm .

• MOpenHωcm
(z, i): On input the public parameters, a vector z = (z1, . . . , zN) ∈ {0, 1}kN ,

and i ∈ [N], this algorithm outputs an opening (zi, φ) ∈ {0, 1}nop .

• MVerHωcm
(i, ψ, (z, φ)): On input the public parameters, an index i ∈ [N], and a commit-

ment/opening pair (ψ, (z, φ)), this algorithm outputs a decision bit.
13Commitment schemes typically also have hiding, which ensures that the commitment does not reveal any

information about the committed string. Looking ahead, we will commit to a public string and hence hiding is
not needed in our case.

11

We require the following properties to hold.

Correctness: For all z = (z1, . . . , zN) ∈ {0, 1}kN , and all i ∈ [N], we have that

Pr

MVerHωcm
(i, ψ, (zi, φ)) = 1 :

ωcm ← MGenH(1λ);

ψ ← MCommitHωcm
(z)

(zi, φ)← MOpenHωcm
(z, i)

 = 1

Binding: For all z = (z1, . . . , zN) ∈ {0, 1}kN , for all i ∈ [N], and all PPT adversaries A, we
have Pr[Gbind

A,z,i(λ) = 1] ≤ νmt, where the game Gbind
A,z,i(λ) is defined as follows:

Game Gbind
A,z,i:

1. Sample ωcm ← MGenH(1λ).
2. Let (ψ, (z′, φ′))← AHωcm

(z, i).
3. Let (zi, φi) := MOpenHωcm

(z, i).
4. Output 1 if and only if all of the following conditions are satisfied:

(a) MVerHωcm
(i, ψ, (z′, φ′)) = 1.

(b) MVerHωcm
(i, ψ, (zi, φi)) = 1.

(c) z′ 6= zi.

Merkle commitments are a well known cryptographic primitive. For completeness, we recall
how the construction works. Although such commitments can be based on standard collision-
resistant hash functions, for consistency with the rest of the paper we describe the construction
in the ROM.

Let T be a complete binary tree with N leafs (without lost of generality we assume that
N is a power of two), and let H : {0, 1}∗ → {0, 1}k be a random oracle. We assign an index
i ∈ [0, N − 1] to every leaf of the tree T . Informally, to commit to a string z, one first parses
(z0, . . . , zN−1) := z and defines zi to be the label of the i-th leaf of T . The commitment is then
defined as the label of the root of the hash tree T . A more formal description is given in Fig. 2
(see also Fig. 3 for a pictorial representation). To simplify the notation in the figure, we define
an auxiliary algorithm Root which, given the values of L leafs, recursively computes the value
of the root of the binary hash tree. More formally:

Algorithm RootH(L, (z0, . . . , zL−1)):

• If L = 2, then output H(z0||z1);

• Else, output H
(
RootH(L2 , (z0, . . . , zL

2
−1))||RootH(L2 , (zL2

, . . . , zL−1))
)
.

4.3 Graph Pebbling and Labeling

Throughout this paper G = (V,E) is considered to be a directed acyclic graph (DAG), where
V is the set of vertices and E is the set of edges of the graph G. Without loss of generality we
assume that the vertices of G are ordered lexicographically and are represented by integers in
[N], where N = |V |. Vertices with no incoming edges are called input vertices or sources, and
vertices with no outgoing edges are called output vertices or sinks. We denote Γ−(v), the set of
all predecessors of the vertex v. Formally, Γ−(v) = {w ∈ V : (w, v) ∈ E}.

In this section we briefly explain the concept of graph labeling and its connection to the
abstract game called graph pebbling which has been introduced in [17]. For more details we
refer to previous literature in, e.g., [17, 40, 4, 18]. We follow conventions from [40] and will use
results from the same. Sometimes for completeness we will use texts verbatim from the same
paper.

12

a

b

d e

c

f g

a := H(b||c)

d := z0
e := z1 f := z2

g := z3

b := H(d||e) c := H(f ||g)

Figure 3: Example of a Merkle commitment of a string z = (z0, z1, z2, z3). Here MCommitH(z) =
a and for example MOpenH(1, z) = (e, (d, c)). The verification algorithm, given (a, (e′, (d′, c′)))
and the index 1 computes b′ := H(d′||e′) and a′ := H(b′||c′) and outputs 1 if a = a′ and 0
otherwise.

Labeling of a graph. Let H : {0, 1}∗ → {0, 1}nH be a random oracle. The H-labeling of a
graph G is a function which assigns a label to each vertex in the graph; more precisely, it is a
function label : V → {0, 1}nH which maps each vertex v ∈ V to a bit string label(v) := H(qv),
where we denote by

{
v(1), . . . , v(d)

}
= Γ−(v) and let

qv :=

{
v if v is an input vertex,
v || label(v(1)) || . . . || label(v(d)) otherwise.

An algorithm AH labels a subset of vertices W ⊆ V if it computes label(W). Specifically, AH

labels the graph G if it computes label(V).
Additionally, for m ≤ |V |, we define the H-labeling of the graph G with m faults14 as a

function label : V → {0, 1}nH such that, for some subset of vertices M ⊂ V of size m, it holds

label(v) = H(qv), for every v ∈ V \M,

label(v) 6= H(qv), for every v ∈M.

Sometimes we refer to labeling with faults as partial labeling. The following lemma appeared in
form of a discussion in [40]. It is based on an observation previously made in [18].

Lemma 1 ([40, Section 5.2]). Let AH be an (s, t)-bounded algorithm which computes the labeling
of a DAG G with m ∈ N faults. Then there exists an (s+m · nH, t)-bounded algorithm ÃH that
computes the labeling of G without faults but gets m correct labels to start with (they are initially
stored in the memory of ÃH and sometimes called initial labels).

Intuitively the above lemma follows because the algorithm ÃH can overwrite the additional
space it has, once the initial labels stored there are not needed.

Pebbling game. The pebbling of a DAG G = (V,E) is defined as a single-player game. The
game is described by a sequence of pebbling configurations P = (P0, . . . , PT), where Pi ⊆ V is
the set of pebbled vertices after the i-th move. In our model, the initial configuration P0 does
not need to be empty. The rules of the pebbling game are the following. During one move
(translation from Pi to Pi+1), the player can place one pebble on a vertex v if v is an input
vertex or if all predecessors of v already have a pebble. After placing one pebble, the player can

14One can also define an analogy of faults in the pebbling game by adding a second kind of pebbles. These
pebbles are called red pebbles in [18] and wild cards in [4].

13

remove pebbles from arbitrary many vertices.15 We say that the sequence P pebbles a set of
vertices W ⊆ V if W ⊆

⋃
i∈[0,T]Pi.

The time complexity of the pebbling game P is defined as the number of moves t(P) := T .
The space complexity of P is defined as the maximal number of pebbles needed at any pebbling
step; formally, s(P) := maxi∈[0,T]{|Pi|}.

Ex-post-facto pebbling. Let AH be an algorithm that computes the (partial) H-labeling of
a DAG G. The ex-post-facto pebbling bases on the transcript of the graph labeling. It processes
all oracle queries made by AH during the graph labeling (one at a time and in the order they
were made). Informally, every oracle query of the form qv, for some v ∈ V , results in placing
a pebble on the vertex v in the ex-post-facto pebbling game. This provides us a link between
labeling and pebbling of the graph G. The formal definition follows.

Let H : {0, 1}∗ → {0, 1}nH be a random oracle and QH a table of all random oracle calls
made by AH during the graph labeling. Then we define the ex-post-facto pebbling P of the graph
G as follows:

• The initial configuration P0 contains every vertex v ∈ V such that label(v) has been used
for some oracle query (e.g. some query of the form H(· · · ‖label(v)‖ · · ·)) at some point in
the transcript but the query qv is not listed in the part of the transcript preceding such
query.

• Assume that the current configuration is Pi, for some i ≥ 0. Then find the next unprocessed
oracle query which is of the form qv, for some vertex v, and define Pi+1 as follows:

1. Place a pebble on the vertex v.
2. Remove all unnecessary pebbles. A pebble on a vertex v is called unnecessary if

label(v) is not used for any future oracle query, or if the query qv is listed in the
succeeding part of the transcript before label(v) is used in an argument of some other
query later. Intuitively, either label(v) is never used again, or AH anyway queries qv
before it is used again.

The lemma below appeared in several variations in the literature (see, for example, [17, 4,
40]), depending on the definition of graph pebbling.

Lemma 2 (Labeling Lemma). Let G be a DAG. Consider an (s, t)-bounded adversary AH which
computes the H-labeling of the graph G. Also assume that AH does not guess any correct output
of H without querying it. Then the ex-post facto pebbling strategy P described above pebbles the
graph G, and the complexity of P is

s(P) ≤ s

nH
and t(P) ≤ t.

Proof. By definition of ex-post-facto pebbling, it is straightforward to observe that if AH com-
putes the H-labeling of the graph G, then the ex-post-facto pebbling P pebbles the graph. Since
we assume that the adversary does not guess the correct label, the only way AH can learn the
label of the vertex v is by querying the random oracle. The bound on t(P) is immediate. Again,
by definition of the ex-post-facto pebbling, there is no unnecessary pebble at any time. Thus,
the number of required pebbles is equal to the maximum number of labels that AH needs to
store at once. Hence, the space bound follows directly from the fact that each label consists of
nH bits and that the algorithm AH is s-space bounded.

15Similar to [40] in our model we assume that removing pebbles is for free as it does not involve any oracle
query

14

Localized expander graphs. A (µ, α, β)-bipartite expander, for 0 < α < β < 1, is a DAG
with µ sources and µ sinks such that any αµ sinks are connected to at least βµ sources. We can
define a DAG G′µ,kG,α,β by stacking kG (∈ N) bipartite expanders. Informally, stacking means
that sinks of the i-th bipartite expander are sources of the i+1-st bipartite expander. It is easy
to see that such a graph has µ(kG + 1) nodes which are partitioned into kG + 1 sets (which
we call layers) of size µ. A Stack of Localized Expander Graphs (SoLEG) is a DAG Gµ,kG,α,β
obtained by applying the transformation called localization (see [7, 40] for a definition) on each
layer of the graph G′µ,kG,α,β .

We restate two lemmas about pebbling complexity of SoLEG from [40]. The latter appeared
in [40] in form of a discussion.

Lemma 3 ([40, Theorem 4]). Let Gµ,kG,α,β be a SoLEG where γ := β − 2α > 0. Let P =
(P0, . . . , Pt(P)) be a pebbling strategy that pebbles at least αµ output vertices of the graph Gµ,kG,α,β
which were not initially pebbled, where the initial pebbling configuration is such that |P0| ≤ γµ,
and the space complexity of P is bounded by s(P) ≤ γµ. Then the time complexity of P has the
following lower bound:

t(P) ≥ 2kGαµ.

Lemma 4 ([40, Section 5.2]). Let Gµ,kG,α,β be a SoLEG and H : {0, 1}∗ → {0, 1}nH be a random
oracle. There exists a polynomial time algorithm AH that computes the H-labeling of the graph
Gµ,kG,α,β in µnH-space.

5 Non-Interactive Proofs of Space

We start by defining non-interactive proofs of space, in Section 5.1. Then, in Section 5.2, we
describe our construction based on Merkle commitments and pebbling of directed acyclic graphs.
The security analysis is given in Section 5.3.

5.1 NIPoS Definition

A proof of space (PoS) [4, 18] is a (possibly interactive) protocol between a prover and a verifier,
in which the prover attempts to convince the verifier that it used a considerable amount of
memory or disk space in a way that can be easily checked by the verifier. Here, “easily” means
with a small amount of space and computation; a PoS with these characteristics is sometimes
called a proof of transient space [40]. A non-interactive PoS (NIPoS) is simply a PoS where the
proof consists of a single message, sent by the prover to the verifier; to each proof, it is possible
to associate an identity.

Intuitively, a NIPoS should meet two properties known as completeness and soundness.
Completeness says that a prover using a sufficient amount of space will always be accepted by
the verifier. Soundness, on the other hand, ensures that if the prover invests too little space, it
has a hard time to convince the verifier. A formal definition follows below.

Definition 9 (Non-interactive proof of space). For parameters sP, sV, s, t, k, n ∈ N, with sV ≤
s < sP, and νpos ∈ (0, 1), an (sP, sV, s, t, k, n, νpos)-non-interactive proof of space scheme (NIPoS
for short) in the ROM consists of a tuple of PPT algorithms (SetupH,PH,VH) with the following
syntax.

• SetupH(1λ): This is a randomized polynomial-time (in λ) algorithm with no space re-
striction. It takes as input the security parameter and it outputs public parameters
ωpos ∈ {0, 1}∗.

15

• PHωpos
(id): This is a probabilistic polynomial-time (in λ) algorithm that is sP-bounded.

It takes as input an identity id ∈ {0, 1}k and hard-wired public parameters ωpos, and it
returns a proof of space π ∈ {0, 1}n.

• VHωpos
(id , π): This algorithm is sV-bounded and deterministic. It takes as input an identity

id , hard-wired public parameters ωpos, and a candidate proof of space π, and it returns a
decision bit.

We require the following properties to hold.

Completeness: For all id ∈ {0, 1}k, we have that

Pr
[
VHωpos

(id , π) = 1 : ωpos ← SetupH(1λ);π ← PHωpos
(id)

]
= 1,

where the probability is taken over the randomness of algorithms Setup and P, and over
the choice of the random oracle.

Extractability: There exists a polynomial-time deterministic algorithm K (the knowledge ex-
tractor) such that for any probabilistic polynomial-time algorithm B, and for any id ∈
{0, 1}k, we have

Pr[Gext
B,id (λ) = 1] ≤ νpos,

where the experiment Gext
B,id (λ) is defined as follows:

Game Gext
B,id (λ):

1. Sample ωpos ← SetupH(1λ) and π ← PHωpos
(id).

2. Let A← BH(ωpos, id , π) and {id i}i∈[q] := K(ωpos,QH(B)).

3. Let (ĩd , π̃) := AH(id , π).
4. Output 1 if and only if VHωpos

(ĩd , π̃) = 1 and ĩd 6∈ {id i}i∈[q] ∪ {id}

where A is an (s, t)-bounded deterministic algorithm, q ∈ poly(λ), the set QH(B) contains the
sequence of queries of B to H and the corresponding answers, and where the probability is taken
over the coin tosses of Setup,B,P, and over the choice of the random oracle.

Roughly, the extractability property requires that no space-bounded adversary is able to
modify an honestly computed proof π for identity id into an accepting proof π̃ for an identity
ĩd 6= id . Moreover, this holds true even if A is chosen adaptively (possibly depending on the
public parameters, the identity id , and a corresponding valid proof π) by a PPT algorithm B
with unbounded space. Since, however, B can compute offline an arbitrary polynomial number
of valid proofs (id i, πi), what the definition requires is that no (B,A) is able to yield a valid
pair (ĩd , π̃) for an ĩd different than id that the knowledge extractor K cannot predict by just
looking at B’s random oracle queries. It is easy to see that such an extractability requirement
constitutes a stronger form of soundness, as defined, e.g., in [4, 40].

5.2 NIPoS Construction

We now give a NIPoS construction that is essentially a non-interactive variant of the PoS con-
structions of [40] that is in turn based on [4]. In particular, we show that it satisfies the stronger
form of soundness which we call extractability. In addition, we formalize the security analysis
given in [40] with concrete parameters that may be of independent interest.

The construction is built from the following ingredients:

16

• A random oracle H : {0, 1}∗ → {0, 1}nH .

• A graph Gµ,kG,α,β from the family of SoLEG (cf. Section 4.3), where α, β are constants in
(0, 1) such that 2α < β. By definition of such a graph, the number of nodes is given by
N = µ(kG + 1). The in-degree d depends on γ = β − 2α, and it is hence constant.16

Without loss of generality we assume that the vertices of Gµ,kG,α,β are ordered lexicograph-
ically and are represented by integers in [N]. For simplicity we also assume that N is a
power of 2, and that log(N) divides nH.

• A (nH, ncm, N, nop, νmt)-Merkle commitment scheme (MGenH,MCommitH,MOpenH,MVerH)
(cf. Section 4.2).

Our construction is formally described in Fig. 4. Let us here just briefly explain the main
ideas. The setup algorithm chooses a graph Gµ,kG,α,β from the family of SoLEG. Given an
identity id , the prover first computes the Hid -labeling of the graph Gµ,kG,α,β and commits to
the resulting string using the Merkle commitment scheme. Then τ vertices of the graph are
randomly chosen. For each challenged vertex v, the prover computes and outputs the opening
for this vertex as well as opening for all its predecessors. The verifier gets as input the identity,
a commitment, and τ(d+ 1) openings, where d is the degree of the graph. It firstly verifies the
consistency of all the openings with respect to the commitment. Secondly, it checks the local
correctness of the Hid -labeling.

The completeness of our scheme relies on the correctness of the underlying commitment
scheme. The extractability will follow from the pebbling complexity of the graph Gµ,kG,α,β and
the binding property of the commitment scheme. In particular, we prove the following statement:

Theorem 2. Let H : {0, 1}∗ → {0, 1}nH be a random oracle, Gµ,kG,α,β be a SoLEG with N =
µ(kG + 1) nodes and d in-degree, and (MGenH,MCommitH,MOpenH,MVerH) be a (nH, ncm, N,
nop, νmt)-Merkle commitment. Let s, t ∈ N be such that, for some δ ∈ [0, β − 2α), we have
t < 2kGαµ and s ≤ δµnH. Then, the NIPoS scheme described in Fig. 4 is a (sP, sV, s, t, k, n,
νpos)-NIPoS for any k ∈ N, as long as:

sP ≥ k + nH(µ+ log(N) + 1) + n

s ≥ sV ≥ k + n+ nH

n = ncm + nop(d+ 1)(nH/log(N))

νpos ≤ exp

(
−nHµ(γ − δ)
N log(N)

)
+
nH(d+ 1)νmt

log(N)
+
|QH(A)|

2nH
,

where QH(A) are the random oracle queries asked by A and γ = β − 2α.

5.3 Security Analysis

In this section we show that the construction suggested by [40] satisfies the stronger form of
soundness which we call extractability. In addition, we formalize the security analysis given
in [40] and provide concrete parameters. Let us first explain the intuition behind the proof of
Theorem 2. The adversary wins the game only if all the checked vertices have a correct Hĩd -
label. By the binding property of the underlying Merkle commitment scheme this means that
the adversary A has to compute a partial Hĩd -labeling of the graph Gµ,kG,α,β . Since ĩd is not
extractable from the query table of QH(B) of the adversary B and it is not equal to id , the
adversary A does not get any Hĩd label “for free” and hence, it has to compute the labeling on

16As recommended in [40] we will typically work with 0.7 ≤ γ ≤ 0.9 to get loosely 40 < d < 200.

17

NIPoS Construction

SetupH(1λ): On input the security parameter λ, generate the public parameters ωcm ←
MGenH(1λ) for the Merkle commitment. Consider the graph Gµ,kG,α,β ; recall that the
number of nodes of Gµ,kG,α,β is given by N = µ(kG + 1) and the in-degree is d ∈ O(1).
Output ωpos = (Gµ,kG,α,β, ωcm).

PHωpos
(id): On input an identity id ∈ {0, 1}k, and the public parameters ωpos = (Gµ,kG,α,β, ωcm),
proceed as follows.

1. Generate a Hid -labeling of Gµ,kG,α,β . Denote the labeling by z = (z1, . . . , zN), where
each zi ∈ {0, 1}nH .

2. Generate a commitment of z, i.e. ψ ← MCommitHωcm
(z) where ψ ∈ {0, 1}ncm .

3. Compute ρ := H(id , ψ). Using ρ as the randomness, pick τ vertices v =
(v1, v2, . . . , vτ) by setting v := ρ for τ = nH/ log(N), where each vi ∈ [N].

4. For each vertex vi ∈ v:

(a) Compute the opening (zvi , φi) := MOpenHωcm
(z, vi), for (zvi , φi) ∈ {0, 1}nop .

(b) Let Γ−(vi) = (u
(1)
1 , . . . , u

(i)
d) where each u(i)

j ∈ [N]. Compute the opening corre-

sponding to each u(i)
j ∈ Γ−(vi), i.e. (z

u
(i)
j

, φ
(j)
j) := MOpenHωcm

(z, u
(i)
j).

(c) Define

πi :=
(

(zvi , φi), (zu(i)
1

, φ
(i)
1), · · · , (z

u
(i)
d

, φ
(i)
d)
)
∈ {0, 1}nop(d+1).

5. Output π := (ψ, (π1, . . . , πτ)) ∈ {0, 1}n as a proof of space for id .

VHωpos
(id , π): On input the public parameters ωpos = (Gµ,kG,α,β, ωcm), an identity id ∈ {0, 1}k,
and a candidate proof of space π ∈ {0, 1}n, it first parses π as (ψ, (π1, · · · , πτ)), and
computes ρ := H(id , ψ). Using ρ as the randomness, pick τ vertices v = (v1, v2, . . . , vτ)
by setting v := ρ for τ = nH/ log(N), where each vi ∈ [N] (exactly as the prover did).
Hence, it proceeds as follows for each i ∈ [τ]:

1. Parse πi := ((wi, φi), (w
(i)
1 , φ

(i)
1), . . . , (w

(i)
d , φ

(i)
d)) and then:

(a) Check that wi = H(id , vi, w
(i)
1 , . . . w

(i)
d).

(b) Check that MVerHωcm
(vi, ψ, (wi, φi)) = 1.

(c) Let Γ−(vi) := (u
(i)
1 , . . . , u

(i)
d); for each j ∈ [d] check that MVerHωcm

(u
(i)
j , ψ,

(w
(i)
j , φ

(i)
j)) = 1.

2. If the above checks succeed for all i ∈ [τ], then output 1, else output 0.

Figure 4: Our NIPoS construction.

its own. By Lemma 3, however, the labeling of the graph Gµ,kG,α,β requires either a lot of space
or a lot of time neither of which the (s, t)-bounded adversary A has. Instead of computing all
the labels correctly via random oracle calls, the adversary A can assign labels of some vertices
to an arbitrary value which does not need to be computed and stored. However, if such partial
labeling consists of too many faults, the probability that at least one of the faulty vertices will be
checked is high. Consequently, a winning adversary can not save a lot of recourses by computing

18

only a partial labeling of the graph.

Proof of Theorem 2. First notice that, by our construction, it is straightforward to see the
bounds on sP, sV and n. Here, we use Lemma 4 that there exists a poly-time algorithm that can
label the graphGµ,kG,α,β in µnH-bit space. Furthermore, since sV ≤ s < sP we get k+n+nH ≤ s.
Completeness is straightforward given these bounds and correctness of the Merkle commitment
scheme. In the rest of the proof we will show the upper-bound on the soundness error νpos.

We start by constructing the knowledge extractor, taking as input the public parameters
ωpos ∈ {0, 1}∗ and the sequence QH(B) of B’s random oracle queries and corresponding answers.

K(ωpos,QH(B)):

• Let IPQH = (u1, . . . , uqB) be the input field of the query table.
• For each ui, such that |ui| ≥ k, define id(ui) := (ui[1], . . . , ui[k]); let I be the

set that contains all unique k-bit strings id(ui).
• Output the set I = {id i}i∈[q].

Adapting to our construction we can describe the security game Gext
B,id (λ) for any security

parameter λ ∈ N as follows:

Game Gext
B,id (λ):

1. Sample ωpos ← SetupH(1λ) and π ← PHωpos
(id).

2. Let A← BH(ωpos, id , π) and {id i}i∈[q] := K(ωpos,QH(B)).

3. Let (ĩd , π̃) := AH(id , π).
4. Parse (ψ, (π1, · · · , πτ)) := π̃ and compute (v1, . . . , vτ) := H(ĩd , ψ).
5. Output 1 if and only if, for every i ∈ [τ], the following holds. Assuming that

((wi, φi), (w
(i)
1 , φ

(i)
1), . . . , (w

(i)
d , φ

(i)
d)) := πi and (u

(i)
1 , . . . , u

(i)
d) := Γ−(vi) all three

conditions below are satisfied:
(a) wi = H(ĩd , vi, w

(i)
1 , . . . w

(i)
d);

(b) MVerHωcm
(vi, ψ, (wi, φi)) = 1;

(c) For each j ∈ [d]: MVerHωcm
(u

(i)
j , ψ, (w

(i)
j , φ

(i)
j)) = 1.

Let us now fix an id ∈ {0, 1}k and define the event Unbind in the game Gext
B,id (λ) adapted

to our NIPoS construction (Fig. 4).

Event Unbind: There exists a z := (z1, . . . , zN) ∈ {0, 1}nHN for which at least one
of the following conditions is true:

1. ∃i ∈ [τ] such that wi 6= zvi , MVerHωcm
(vi, ψ, (zvi , ϕi)) = 1 and MVerHωcm

(vi, ψ, (wi,

φi)) = 1 where (zvi , ϕi) := MOpenHωcm
(z, vi).

2. ∃i ∈ [τ], j ∈ [d] such that w(i)
j 6= z

u
(i)
j

, MVerHωcm
(u

(i)
j , ψ, (zu(i)

j

, ϕ
(i)
j)) = 1 and

MVerHωcm
(u

(i)
j , ψ, (w

(i)
j , φ

(i)
j)) = 1 where (z

u
(i)
j

, ϕ
(i)
j) := MOpenHωcm

(z, u
(i)
j).

Assume that Unbind happens for some adversary B. Then at least one of the two of above
conditions must be true. For simplicity, we assume that the first condition is true; the proof for
the case when the second condition holds follows similarly. We construct an algorithm CH,i for
each i ∈ [τ] which, hard-coded with polynomial-time algorithm A, wins the game Gbind

C,z,j(λ) of
the Merkle commitment scheme, where j = vi, as follows:

19

Adversary CH,iB,z:

• Run ωpos ← SetupH(1λ) and π ← PHωpos
(id) for the fixed id .

• Run BH(ωpos, id , π). Answer RO queries made by B by querying the random
oracle H, and forwarding the answers to B.

• On receiving A from B, run (ĩd , π̃) := AH(id , π) and parse (ψ, (π1, · · · , πτ)) := π̃

and πi := ((wi, φi), (w
(i)
1 , φ

(i)
1), . . . , (w

(i)
d , φ

(i)
d)).

• Finally, return (ψ, (wi, φi)) as answer.

It is straightforward to observe that C perfectly simulates the view of B if the first condition is
true for i. Therefore, using a simple union bound, we have that

Pr[Unbind] ≤
∑
j

Pr[Gbind
C,z,j(λ) = 1] ≤ τ(d+ 1)νmt.

Hence,

Pr[Gext
B,id (λ) = 1] ≤ Pr[Gext

B,id (λ) = 1 | ¬Unbind] + Pr[Unbind]

≤ Pr[Gext
B,id (λ) = 1 | ¬Unbind︸ ︷︷ ︸

:=E

] + τ(d+ 1)νmt (1)

Now, it is clear that the adversary can only win the game if it commits to a partial Hĩd -
labeling of the graph Gµ,kG,α,β where all checked vertices have the correct label. Hence, unless A
successfully guesses the list of vertices ahead of time (which in turn requires predicting outputs
of random oracle H), it has to compute the partial labeling within its space-bound s. Let us
now define the following event.

Event Guess: A guesses the output of at least one random oracle query correctly
(i.e., without querying the random oracle).

If A makes |QH(A)| queries to the random oracle in total, then clearly we have: Pr[Guess] ≤
|QH(A)|/2nH . Hence:

Pr[E] ≤ Pr[E | ¬Guess︸ ︷︷ ︸
:=E′

] + Pr[Guess] ≤ Pr[E | ¬Guess] + |QH(A)|/2nH . (2)

We have to bound the probability of E′. First, note that since we condition on both ¬Guess
and ¬Unbind we have the following observations about E′:

1. ¬Unbind implies that if the adversary A successfully opens some commitment ψ̃ to some
value z with respect to some index i (i.e., MVerH succeeds), then it must have committed
to a string z = (z1, . . . , zτ) such that zi = z.

2. However, instead of labeling every node of Gµ,kG,α,β via random oracle queries, A can
also put some faults (some arbitrary value that requires no space/time) to some node and
“hope” that it is not challenged on those nodes. Since we assume ¬Guess, A can only win
whenever no vi in (v1, . . . , vτ) is labeled with faults, because vi’s are decided randomly
where the randomness comes from the output of H.

We prove the following claim.

20

Claim 1. Suppose A wins by computing a Hĩd -labeling of Gµ,kG,α,β with m faults when condi-
tioned on ¬Guess and ¬Unbind. Then we conclude:

• A does not have any initial Hĩd (·)-labels of the graph Gµ,kG,α,β.

• Pr[E′] ≤ exp(−τ ·mN).

Proof. To prove the first item observe that if the adversary A wins the game Gext
B,id (λ), then ĩd

is not extractable by K from the random oracle queries made by the adversary B in the “pre-
computation phase”, and ĩd 6= id . In particular, this means that A does not have any initial
Hĩd (·)-label as, without guessing, any such labeling can only be done via a valid query to Hĩd (·)
(note that we assume ¬Guess).

To prove the second item we observe that A can only win whenever no vi in (v1, . . . , vτ) is
labeled with faults. Let us call that event NoFault. We have that:

Pr[E′] ≤ Pr[NoFault] ≤
(

1− m

N

)τ
≤ exp

(
−τ ·m

N

)
,

which proves the claim.

Next, let us consider two cases based on the bound on m. Define ζ := γ − δ. Then we have:

Case 1: m ≥ ζµ. In this case by the above claim we directly get that Pr[E′] ≤ exp
(
−nHµ(γ−δ)
N log(N)

)
that proves the theorem.

Case 2: m < ζµ. In this case we first apply Lemma 1 to get that if A (that is (s, t)-bounded)
computes a Hĩd (·)-labeling with m faults, then there exists an (s + nHm, t)-bounded
polynomial-time adversary A′ that computes the Hĩd labeling of the graph Gµ,kG,α,β with
no faults and m initial labels.

Further, applying Lemma 2 we obtain that there exists a pebbling strategy P = (P0, . . . ,

Pt(P)) with |P0| = m < γµ initial pebbles, total space complexity s(P) ≤ (s+nHm)
nH

≤ γµ
and time complexity t(P) ≤ t that pebbles the entire graph Gµ,kG,α,β . In particular,
since 1 − ζ ≥ α,17 it pebbles at least µ − m (= µ(1 − ζ) ≥ αµ) sinks which were not
initially pebbled.18 Finally, applying Lemma 3 we can have t ≥ t(P) ≥ 2kGαµ that is a
contradiction.

Using the parameters from Theorem 2 we obtain the following corollary.

Corollary 1. Let λ ∈ N be a security parameter. Let H : {0, 1}∗ → {0, 1}nH be a random
oracle, Gµ,kG,α,β be a SoLEG with N = µ(kG + 1) nodes and d = O(1) in-degree, and (MGenH,
MCommitH,MOpenH,MVerH) be a (nH, ncm, N, nop, νmt)-Merkle commitment such that:

nH = λ2 γ = β − 2α ∈ (0, 1) kG = λ− 1 µ = λ3

ncm = λ2 nop = O(λ2 log(λ)) νmt ∈ negl(λ).

Then, for any δ ∈ (0, γ), the scheme described in Fig. 4 is a (sP, sV, s, t, k, n, νpos)-NIPoS, for
t ∈ poly(λ) and

k = O(λ4) sP = O(λ5) sV = O(λ4)

n = O(λ4) O(λ4) ≤s ≤ δ · λ5 νpos ≤ exp

(
−(γ − δ)λ

log(λ)

)
+ negl(λ) ∈ negl(λ)

17This can be observed by noticing that 1− ζ ≥ α⇔ 1 ≥ β − α− δ which is always true as α, β, δ ∈ (0, 1).
18Since we assume that A′ starts with m initial labels, it is possible that all the labels are located the last layer

of Gµ,kG,α,β , that is the sinks.

21

6 Our Coding Scheme

In this section we construct a leaky space-bounded non-malleable code based on any NIPoS with
appropriate parameters. Our construction and its security are stated in Section 6.1; the proof
appears in Section 6.2. In Section 6.3, we instantiate our construction by plugging the concrete
parameters from NIPoS construction described in Section 5.

6.1 Code Construction

Let (SetupH,PH,VH) be a NIPoS in the ROM where H : {0, 1}∗ → {0, 1}nH denotes the random
oracle for some nH ∈ poly(λ). We define a (k, n)-coding scheme Π = (InitH,EncodeH,DecodeH)
as follows.

InitH(1λ): Given as input a security parameter λ, it generates the public parameters for the
NIPoS as ωpos ← SetupH(1λ), and outputs ω := ωpos.

EncodeHω (x): Given as input the public parameters ω = ωpos and a message x ∈ {0, 1}k, it runs
the prover to generate the proof of space π ← PHωpos

(x) using the message x as identity.
Then it outputs c := (x, π) ∈ {0, 1}n as a codeword.

DecodeHω (c): Given a codeword c, it first parses c as (x, π). Then it runs the verifier b :=
VHωpos

(x, π). If b = 1 it outputs x, otherwise it outputs ⊥.

Theorem 3. Let λ be a security parameter. Suppose that (SetupH,PH,VH) is a (sP, sV, s, kpos,
npos, negl(λ))-NIPoS. Then, for any p ∈ N such that kpos + npos ≤ p ≤ s and θ ∈ poly(λ),
the (k, n)-code Π = (InitH,EncodeH,DecodeH) defined above is an (`, s, p, θ, sV)-SP-NMC in the
ROM, where

k = kpos n = kpos + npos ` = θ ·O(log λ).

Recall that, in our definition of non-malleability, the parameter s represents the space avail-
able for tampering, which is split into two components: p bits of persistent space, which includes
the n bits necessary for storing the codeword and which is never erased, and s−p bits of transient
space that is erased after each tampering query.

Also, note that the above statement shows a clear tradeoff between the parameter θ (con-
trolling the number of allowed tampering queries) and the leakage bound `. Indeed, the larger θ,
the more leakage we need, until the security guarantee becomes empty; this tradeoff is consistent
with Theorem 1 (see also Fig. 1), as we know that leaky space-bounded non-malleability, for
non-trivial values of `, is impossible for p ≈ n+ k, whenever θ ≥ k.

6.2 Proof of Security

The correctness of the coding scheme is guaranteed by the perfect completeness of the NIPoS.
Moreover, since the decoding algorithm simply runs the verifier of the NIPoS, it is straightforward
to observe that decoding is sV bounded.

Auxiliary algorithms. We start by introducing two auxiliary algorithms that will be useful
in the proof. Recall that, by extractability of the NIPoS, there exists a deterministic polynomial-
time algorithm K such that, given the public parameters ωpos and a table of RO queries QH,
returns a set of identities {id i}i∈[q], for some q ∈ poly(λ). We define the following algorithms
that use K as a subroutine.

22

Algorithm Find(ωpos, id ,QH): Given a value id ∈ {0, 1}kpos , it first runs K to obtain {id i}i∈[q]

:= K(ωpos,QH). If there exists an index i ∈ [q] such that id = id i, then it returns the
string str := bit(i)||01,19 where the function bit(·) returns the binary representation of its
input. Otherwise, the algorithm returns the flag 1`. Clearly, ` = dlog(q)e+ 2.

Algorithm Reconstruct(ωpos, str,QH): On receiving an `-bit string str and a RO query table
QH, it works as follows depending on the value of str:

• If str = 0`, output the symbol same?.

• If str = 1`, output the symbol ⊥.
• If str = a||01, set i := bit−1(a). Hence, run algorithm K to get the set {id i}i∈[q] :=
K(ωpos,QH); in case i ∈ [q], output the value x := id i, otherwise output ⊥.
• Else, output ⊥.

Constructing the simulator. We now describe the simulator SD = (SD1 , S
D
2), depending on

a PPT distinguisher D.20 A formal description of the simulator is given in Fig. 5; we provide
some intuitions below.

Informally, algorithm S1 simulates the random oracle H by sampling a random key χ ←
{0, 1}nkey for a pseudorandom function (PRF) PRFχ : {0, 1}∗ → {0, 1}nH ; hence, it defines
H(u) := PRFχ(u) for any u ∈ {0, 1}∗.21 S2 receives the description of the RO (i.e., the PRF
key χ) from S1, and for each tampering query Ai from D it asks a leakage query Li to its
leakage oracle. The leakage query hard-codes the description of the simulated RO, the table
QH(D) consisting of all RO queries asked by D (until this point), and the code of all tampering
algorithms A1, · · · ,Ai. Thus, Li first encodes the target message x to generate a codeword c,
applies the composed function Ai ◦ Ai−1 ◦ · · · ◦ A1 on c to generate the tampered codeword c̃i,
and decodes c̃i obtaining a value x̃i. Finally, the leakage function signals whether x̃i is equal to
the original message x, to ⊥, or to some of the identities the extractor K would output given
the list of D’s RO queries (as defined in algorithm Find). Upon receiving the output from the
leakage oracle, S2 runs Reconstruct and outputs whatever this algorithm returns.

Some intuitions. Firstly, note that in the real experiment the random oracle is a truly random
function, whereas in the simulation random oracle queries are answered using a PRF. However,
using the security of the PRF, we can move to a mental experiment that is exactly the same as
the simulated game, but replaces the PRF with a truly random function.

Secondly, a closer look at the algorithms Find and Reconstruct reveals that the only case in
which the simulation strategy goes wrong is when the tampered codeword c̃i is valid, but the
leakage corresponding to the output of Find provokes a ⊥ by Reconstruct for some i ∈ [θ]. We
denote this event as Fail. We prove that Fail occurs exactly when the adversary D violates the
extractibility property of the underlying NIPoS, which happens only with negligible probability.

To simplify the notation in the proof, let us write

Dcnm := DH(·),OΠ,x,ω,s,p
cnm (·), Dsim′ := DH(·),OS2,`,x,s,ω

sim (·), Dsim := DS1(·),OS2,`,x,s,ω
sim (·)

to denote the interaction in the real, resp. mental, resp. simulated experiment.
19Looking ahead, in the simulation we use the strings 0` and 1` as flags; therefore, appending 01 to str ensures

that str is never misinterpreted as those flags.
20In the rest of the proof we drop the superscript D, and just let S = (S1,S2).
21Such a PRF can be instantiated using any PRF with fixed domain, and then applying the standard Merkle-

Damgård transformation to extend the input domain to arbitrary-length strings.

23

Simulator S = (S1, S2)

1. Let PRFχ : {0, 1}∗ → {0, 1}nH be a PRF. The simulator S1 samples a uniform random key
χ ← {0, 1}nkey and defines H := PRFχ. The query table QH(D) that stores RO queries
from D is initially empty.

2. For i ∈ [θ] the simulator does the following:

(a) S1 simulates the random oracle queries made by D, before Ai is chosen, and updates
the table QH(D) accordingly.

(b) On receiving the adversary Ai, the simulator S2 queries its leakage oracle O`,xleak with
L : {0, 1}k → {0, 1}` (where ` = O(log(λ))) described as follows:

Description of L:
• L is hard-coded with the description of H (i.e., with PRFχ), the table
QH(D), the code of (A1,A2, . . . ,Ai), and the code of the knowledge ex-
tractor K of the NIPoS.
• Produce the codeword c← EncodeHω (x) and initialize the auxiliary space
σ := 0s−n.
• Let Ãi := Ai ◦ Ai−1 ◦ · · · ◦ A1. Run Ãi to get (c̃, σ̃) := Ãi(c;σ).
• Compute x̃ := DecodeHω (c̃). If x̃ = ⊥, output the flag 1`, else, if x̃ = x,

output the flag 0`; otherwise run strx̃ := Find(ω, x̃,QH(D)) and output
strx̃.
• All other oracle queries that are not asked by D (e.g., queries made by
Aj , or while running Encode etc.) are simulated internally.

(c) On receiving an `-bit string str from L, simulator S2 runs x̃ ← Reconstruct(ω,
strx̃,QH(D)) and outputs x̃.

Figure 5: Description of the simulator S = (S1, S2)

Formal analysis. Consider an adversary D which makes θ queries to Ocnm. By Definition 7,
we need to prove that the simulator SD = (SD1 , S

D
2) defined in Fig. 5 is such that, for all values

x ∈ {0, 1}k, there is a negligible function ν : N→ [0, 1] satisfying∣∣Pr
[
Dcnm(ω) = 1 : ω ← InitH(1λ)

]
− Pr

[
Dsim(ω) = 1 : ω ← InitS1(1λ)

] ∣∣ ≤ ν(λ).

A straightforward reduction to the pseudorandomness of the PRF yields:∣∣∣Pr
[
Dsim(ω) = 1 : ω ← InitS1(1λ)]− Pr[Dsim′(ω) = 1 : ω ← InitH(1λ)

]∣∣∣ ≤ ν ′(λ),

where ν ′ : N→ [0, 1] is a negligible function.
Let us now fix some arbitrary x ∈ {0, 1}k. For every i ∈ [θ], we recursively define the event

NotExtri as:

NotExtri := ¬NotExtri−1 ∧ DecodeHω (c̃) 6∈ {⊥, x}
∧ Find(ω,DecodeHω (c̃),QH(D)) = 1`,

where NotExtr0 is an empty event that never happens and (c̃, σ̃) := Ãi(c, σ) for Ãi := Ai ◦
Ai−1 ◦ · · · ◦ A1. In other words, the event NotExtri happens when Ai is the first adversary

24

that tampers to a valid codeword of a message x̃ 6= x which is not extraxtable from QH(D). In
addition, we define the event

Fail :=
∨
i∈[θ]

NotExtri.

Now, we can bound the probability that D succeeds as follows:∣∣∣Pr [Dcnm(ω) = 1]− Pr
[
Dsim′(ω) = 1

]∣∣∣ (3)

≤
∣∣∣Pr [Dcnm(ω) = 1 | ¬Fail]− Pr

[
Dsim′(ω) = 1 | ¬Fail

] ∣∣∣ · Pr[¬Fail]

+
∣∣∣Pr [Dcnm(ω) = 1 | Fail]− Pr

[
Dsim′(ω) = 1 | Fail

] ∣∣∣ · Pr[Fail]

≤
∣∣∣Pr [Dcnm(ω) = 1 | ¬Fail]− Pr

[
Dsim′(ω) = 1 | ¬Fail

]∣∣∣+ Pr[Fail],

where in the above equations the probability is taken also on the sampling of ω ← InitH(1λ).
We complete the proof by showing the following two claims.

Claim 2. Event Fail happens with negligible probability.

Proof. Assume that for some x ∈ {0, 1}k adversary D provokes the event Fail with non-negligible
probability. This implies that there is at least one index j ∈ [θ] such that event NotExtrj
happens with non-negligible probability. We construct an efficient algorithm B running in game
Gext

B,x(λ), that attempts to break the extractability of the NIPoS:

Algorithm BHD :

1. Receive as input ωpos ← SetupH(1λ), x ∈ {0, 1}kpos , and π ← PHωpos
(x).

2. Assign (c, σ) := (x||π, 0s−n), QH(D) := ∅, and define A := Id, where Id : {0, 1}s
→ {0, 1}s is the identity function.

3. For i ∈ [θ] proceed as follows:

(a) Answer random oracle queries made by D, before Ai is chosen, by querying
H in game Gext

B,x(λ) and forwarding the answers to D; in addition, store
these queries in the table QH(D).

(b) On receiving Ai, set A := A ◦ Ai and run (c̃, σ̃) := Ai(c;σ).
(c) Compute x̃ := DecodeHω (c̃) and run strx̃ := Find(ω, x̃,QH(D)). If strx̃ = 1`

and x̃ 6= ⊥, then output A and stop. Otherwise send x̃ to D and let
(c, σ) := (c̃, σ̃0||0s−p), where σ̃0||σ̃1 := σ̃.

We observe that B perfectly simulates the view of Dsim′ . So, if there exists at least one j ∈ [θ]
for which NotExtrj happens, B wins the game Gext

B,x(λ). Therefore we have that:

Pr[Gext
D,x(λ) = 1] ≥ Pr[∃j ∈ [θ] : NotExtrj]

which, combined with the extractability of NIPoS, completes the proof.

Claim 3.
∣∣∣Pr
[
Dcnm(1λ) = 1 | ¬Fail

]
− Pr

[
Dsim′(1λ) = 1 | ¬Fail

]∣∣∣ = 0

Proof. By inspection of the simulator’s description it follows that, conditioning on event Fail
not happening, the simulation oracle using S2 yields a view that is identical to the one obtained
when interacting with the tampering oracle. The claim follows.

25

Combining the above two claims together with Eq. (3), we obtain that∣∣∣Pr
[
Dcnm(ω) = 1 : ω ← InitH(1λ)

]
− Pr

[
Dsim′(ω) = 1 : ω ← InitS1(1λ)

]∣∣∣
is negligible, as desired.

It remains to argue about the size of leakage. To this end, it suffices to note that the
simulator S2 receives O(log(λ)) bits of leakage for every i ∈ [θ]. Thus, the total amount of
leakage is θ ·O(log(λ)), exactly as stated in the theorem.

6.3 Concrete Instantiation and Parameters

Instantiating Theorem 3 with our concrete NIPoS from Corollary 1, and using bounds from
Theorem 1, we obtain the following corollaries. The first corollary provides an upper bound on
the number of tolerated tampering queries at the price of a high (but still non-trivial) leakage
parameter.

Corollary 2. For any γ, δ, ε ∈ (0, 1), there exists an explicit construction of a (k, n)-code in the
ROM that is a (γ · k, s, p, θ,Θ(λ4))-SP-NMC, where

k = Θ(λ4) n = Θ(λ4) Θ(λ4) ≤ p ≤ s = δλ5 θ = Θ(λ4−ε).

The second corollary yields a smaller number of tolerated tampering queries with optimal
(logarithmic) leakage parameter.

Corollary 3. For any δ ∈ (0, 1), there exists an explicit construction of a (k, n)-code in the
ROM that is an (O(log λ), s, p, θ, O(λ4))-SP-NMC, where

k = O(λ4) n = O(λ4) O(λ4) ≤ p ≤ s = δλ5 θ = O(1).

7 Trading Leakage for Tamper-Proof Security

We revise the standard application of non-malleable codes to obtain protection against memory
tampering attacks. The main idea, put forward in [21], is very simple. Let F be an arbitrary
functionality, initialized with “secret key” κ; instead of storing κ, we store an encoding c of κ,
computed via a non-malleable code. Hence, whenever we have to run F , we decode c obtaining
a value κ̃ which we use to evaluate the functionality on any chosen input. It is not too hard
to show that this idea yields security against tampering attacks against the secret key, for the
same class of adversaries supported by the non-malleable code.

This methodology, also known as “tamper simulatability”, has been explored in several vari-
ants [35, 25, 13, 26]. Here, we propose yet another variant where the above compiler is instan-
tiated using a leaky space-bounded continuously non-malleable code; this yields security in a
model where it is possible to “trade” security against space-bounded memory tampering, with
some bits of leakage on the secret key, an idea already explored in a related line of research [28].

7.1 Leaky Tamper Simulatability

Let F : {0, 1}k × {0, 1}kin → {0, 1}kout be a randomized functionality, taking as input a secret
value κ ∈ {0, 1}k and a string m ∈ {0, 1}kin , and producing a value y ← F(κ,m) ∈ {0, 1}kout . For
simplicity, we consider the case of stateless functionalities where the value κ is never updated
during the computation; an extension to the case of stateful functionalities is immediate, along
the lines of previous work [21, 35, 25]. We note, however, that since updating the value κ

26

requires execution of the encoding algorithm (which uses a lot of space), considering only stateless
functionalities is natural in our model.

Given a non-malleable code Π, the hardened functionality corresponding to F is defined
below. For consistency with the rest of the paper, we state the definition in the ROM.

Definition 10 (Hardened functionality). Consider a functionality F : {0, 1}k × {0, 1}kin →
{0, 1}kout , and let Π = (InitH,EncodeH,DecodeH) be a (k, n)-code in the ROM. For parameters
s, p ∈ N, with s ≥ p ≥ n, the (s, p)-memory hardened functionality F̂(Π, s, p) corresponding to
F consists of algorithms (SetupH,RunH) with the following syntax.

• SetupH(1λ, s, κ): Upon input the security parameter λ ∈ N, sample ω ← InitH(1λ), let
c← EncodeHω (κ), and setM := c||0p−n||0s−p. Output (ω,M).

• RunHω (M,m): Parse M := c||σ0||σ1 and let κ̃ = DecodeHω (c). If κ̃ = ⊥, set ỹ = ⊥; else,
run ỹ ← F(κ̃,m). UpdateM := c||σ0||0s−p and output (ỹ,M).

It follows by correctness of the encoding scheme that, for all inputs, F̂(Π, s, p) computes
exactly the same functionality as F . Notice that the hardened functionality corresponding to
F has p bits of persistent storage (i.e., n bits for storing the secret encoding and p− n bits for
auxiliary data); the remaining s− p bits represent transient storage that is needed for decoding
the codeword and running the original functionality with the obtained key (this memory is erased
after each evaluation).

In case there is not enough transient space to decode or to run the original functionality,
an external memory must be used. Thus, we get a natural trade-off between the amount of
auxiliary data that can be stored on the device and the class of functionalities that can be
executed without using an external memory.

Tampering experiment. To define security, we consider an s-bounded adversary that tam-
pers with the memory content of the hardened functionality. This is done via the experiment
described below, which is executed by a PPT algorithm D, and is parametrized by an (s, p)-
memory hardened functionality F̂(Π, s, p), a key κ ∈ {0, 1}k, a parameter θ ∈ N, and security
parameter λ ∈ N.

Experiment TamperInteract(D, F̂(Π, s, p), κ, θ, λ):

1. Run (ω,M)← SetupH(1λ, s, κ) and give ω to D.
2. D can run the following commands (in an arbitrary order):

• 〈Tamper,A ∈ Asspace〉: ParseM := c||σ0||σ1. Let (c̃, σ̃0, σ̃1) = A(c;σ0||σ1),
and updateM := c̃||σ̃0||σ̃1. This command can be run for at most θ times.
• 〈Execute,m ∈ {0, 1}kin〉: Execute (ỹ,M) ← RunHω (M,m), and return ỹ.

This command can be executed an arbitrary polynomial number of times.
• 〈RO, u ∈ {0, 1}∗〉: Return v = H(u). This command can be executed an

arbitrary polynomial number of times.
3. D outputs a bit as a function of its view.

Leaky simulation. Intuitively, a non-malleable code is `-leaky tamper simulatable if the above
tampering experiment can be simulated with black-box access to the original functionality F ,
plus ` bits of leakage on the secret key. This is formalized in the experiment described below,
which is executed by a PPT algorithm D and is parametrized by a functionality F , a PPT
simulator S, a value ` ∈ N, an initial key κ ∈ {0, 1}k, a parameter θ ∈ N, and security parameter
λ ∈ N.

27

Experiment BBLeak(D,F , S, `, κ, θ, λ):

1. The simulator S, which is given black-box access to F(κ, ·) and oracle access to
O`,κleak(·), emulates the entire view of D. In particular:

• It takes care of simulating the public parameters and answering (polyno-
mially many) random oracle queries;
• It needs to answer (at most θ) tampering queries and (polynomially many)

execute queries.

2. D outputs a bit as a function of its view.22

Definition 11 (Leaky tamper simulatability). Let `, s, p, θ, k, n ∈ N be functions of the security
parameter λ ∈ N, with s ≥ p ≥ n. A (k, n)-code Π is `-leaky (s, p)-space θ-tamper simulatable
in the ROM, if for all PPT distinguishers D there exists a PPT simulator S such that for all
functionalities F , and for all κ ∈ {0, 1}k, there is a negligible function ν : N→ [0, 1] for which∣∣∣Pr

[
TamperInteract(D, F̂(Π, s, p), κ, θ, λ) = 1

]
− Pr [BBLeak(D,F ,S, `, κ, θ, λ) = 1]

∣∣∣ ≤ ν(λ).

7.2 Analysis

In the following theorem we show the correspondence between leaky non-malleable and tamper
simulatable codes.

Theorem 4. Let Π be an `-leaky (s, p)-space-bounded θ-continuously non-malleable code in the
ROM. Then, Π is also `-leaky (s, p)-space θ-tamper simulatable in the ROM.

Informally, Theorem 4 states that every functionality F that is resistant to ` bits of leakage
on the secret key can be protected against memory tampering by an `-leaky non-malleable code.

Proof. We start by describing the simulator Ŝ, which is based on the simulator S := (S1, S2) of
the underlying non-malleable code. Without loss of generality, we assume that each command
of the form 〈Tamper, ·〉 is followed by at least one or more commands of the form 〈Execute, ·〉.23

Simulator Ŝ(1λ,S1, S2):

• Run ω ← InitS1(1λ) and forward ω to D.

• Upon input a command of the form 〈Tamper,A ∈ Asspace〉, invoke S2(1λ, ω,A);
whenever S2 asks for a leakage query, send the same query to the oracle O`,κleak(·)
and forward the answer back to S2. Let κ̃ ∈ {0, 1}k ∪ {same?,⊥} be the value
returned by the simulator.

• Upon input a command of the form 〈Execute,m〉, proceed as follows:

– If κ̃ = ⊥, return ỹ := ⊥;
– If κ̃ = same?, forward m to the black-box functionality F(κ, ·), receive back

the answer y, and output such value;
– Else, if κ̃ ∈ {0, 1}k, return ỹ ← F(κ̃,m).

22Typically, the simulator is restricted to run the black-box functionality on the very same inputs on which
the distinguisher specifies its execute queries.

23If this is not the case, S can just combine the different space-bounded algorithms into one algorithm.

28

• Upon input a command of the form 〈RO, u〉, return the same as S1(u).

Assume there exists a PPT distinguisher D̂, a value κ ∈ {0, 1}k, and a polynomial ρ(λ), such
that, for infinitely many values of λ ∈ N, we have∣∣Pr

[
TamperInteract(D̂, F̂(Π, s, p), κ, θ, λ) = 1

]
− Pr

[
BBLeak(D̂,F , Ŝ, `, κ, θ, λ) = 1

] ∣∣ ≥ 1/ρ(λ).

We construct a PPT distinguisher D, asking at most θ tampering queries, such that∣∣Pr
[
DH(·),OΠ,κ,ω,s,p

cnm (·)(ω) = 1 : ω ← InitH(1λ)
]

− Pr
[
DS1(·),OS2,`,κ,s,ω

sim (·)(ω) = 1 : ω ← InitS1(1λ)
] ∣∣ ≥ 1/ρ(λ),

which contradicts `-leaky (s, p)-space-bounded θ-continuous non-malleability of the underlying
coding scheme. A description of D (running D̂) follows below.

Distinguisher D:

• Receive the public parameters ω ∈ {0, 1}∗, and initialize D̂(ω).

• Upon input a command of the form 〈Tamper,A ∈ Asspace〉, forward (a description
of) A to the target tampering oracle (either Ocnm or Osim) and receive back a
value κ̃ ∈ {0, 1}k ∪ {⊥}.
• Upon input a command of the form 〈Execute,m〉, if κ̃ 6= ⊥ answer with y ←
F(κ̃,m), else answer with ⊥.
• Upon input a command of the form 〈RO, u〉, forward u to the target random

oracle (either H or S1) and forward the answer v ∈ {0, 1}nH to D̂.

• Output the same as D̂ outputs.

For the analysis, first note that D is almost as efficient as D̂ and moreover, depending
on its target random oracle being either equal to H or S1, the simulation of random oracle
queries performed by D is identical to either the one in experiment TamperInteract or the one
in experiment BBLeak. As for the simulation of tampering/execute queries, we observe the
following:

• If D’s target tampering oracle is Ocnm, each space-bounded algorithm A is applied to
the current state st = (c, σ0, σ1)—playing the role of the memory M of the hardened
functionality—yielding a modified state (c̃, σ̃0, σ̃1); hence, the value κ̃ = Decodeω(c̃) is
received by D, and the memory is updated to (c̃, σ̃0, 0

s−p) (i.e., the transient memory is
erased).

When an execute query is run later on, say upon input a message m ∈ {0, 1}kin , the
distinguisher runs F upon input κ̃ and m (unless κ̃ = ⊥, in which case ⊥ is returned). By
inspection, this is exactly what happens in experiment TamperInteract, and thus the
view of D̂ is perfectly simulated.

• If D’s target tampering oracle is Osim, each space-bounded algorithm A causes an invoca-
tion of simulator S2, yielding a value κ̃ ∈ {0, 1}k ∪{⊥} that is received by D. (Recall that,
in case S2 outputs same?, the simulation oracle replaces this value with the hard-wired
value κ.)

29

When an execute query is run later on, say upon input a message m ∈ {0, 1}kin , the
distinguisher runs F upon input κ̃ and m (unless κ̃ = ⊥, in which case ⊥ is returned). By
inspection, this is exactly what happens in experiment BBLeak, and thus the view of D̂
is perfectly simulated.

We conclude that D makes a perfect simulation, and thus retains the same (non-negligible)
distinguishing advantage as that of D̂. This finishes the proof.

References

[1] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable
reductions and applications. In STOC, pages 459–468, 2015.

[2] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In STOC, pages 774–783, 2014.

[3] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC,
Berkeley, CA, USA, 1996. USENIX Association.

[4] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of space:
When space is of the essence. In SCN, pages 538–557, 2014.

[5] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In EUROCRYPT, pages 881–908, 2016.

[6] Rishiraj Bhattacharyya and Pratyay Mukherjee. Non-adaptive programmability of random
oracle. Theor. Comput. Sci., 592:97–114, 2015.

[7] Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Balloon hashing: A memory-
hard function providing provable protection against sequential attacks. In ASIACRYPT,
pages 220–248, 2016.

[8] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating
errors in cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

[9] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with
their many tampered extensions. In ACM STOC, pages 285–298, 2016.

[10] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Inno-
vations in Theoretical Computer Science, pages 155–168, 2014.

[11] Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable
encryption: Simpler, shorter, stronger. In TCC, pages 306–335, 2016.

[12] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to
multi-bit public-key encryption via non-malleable codes. In TCC, pages 532–560, 2015.

[13] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable
and updatable non-malleable codes and their applications. In TCC, pages 427–450, 2015.

[14] Ivan Damgård, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. The chaining
lemma and its application. In Information Theoretic Security, pages 181–196, 2015.

[15] Ivan Damgård, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. J. Cryptology, 30(1):152–190, 2017.

30

[16] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In TCC, pages 1–22, 2013.

[17] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In CRYPTO,
pages 37–54, 2005.

[18] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In CRYPTO, pages 585–605, 2015.

[19] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes resilient
to space-bounded leakage. In CRYPTO, pages 335–353, 2011.

[20] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing
functions. In TCC, pages 125–143, 2011.

[21] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In In-
novations in Computer Science, pages 434–452, 2010.

[22] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Mind your coins: Fully leakage-
resilient signatures with graceful degradation. In ICALP, pages 456–468, 2015.

[23] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Fully leakage-resilient signatures
revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval
model. Theor. Comput. Sci., 660:23–56, 2017.

[24] Antonio Faonio and Daniele Venturi. Efficient public-key cryptography with bounded leak-
age and tamper resilience. In ASIACRYPT, pages 877–907, 2016.

[25] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

[26] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper
and leakage resilient von Neumann architecture. In PKC, pages 579–603, 2015.

[27] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key derivation for poly-size tampering circuits. IEEE Trans. Informa-
tion Theory, 62(12):7179–7194, 2016.

[28] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to
trade leakage for tamper-resilience. In ICALP, pages 391–402, 2011.

[29] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1986.

[30] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam,
and Stefano Tessaro. Random oracles with(out) programmability. In ASIACRYPT, pages
303–320, 2010.

[31] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorith-
mic tamper-proof (ATP) security: Theoretical foundations for security against hardware
tampering. In TCC, pages 258–277, 2004.

[32] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryp-
tography from minimal assumptions. In EUROCRYPT, pages 160–176, 2013.

[33] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes.
In TCC, pages 451–480, 2015.

31

[34] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In ASIACRYPT, pages 703–720, 2009.

[35] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state
model. In CRYPTO, pages 517–532, 2012.

[36] Ralph C. Merkle. Method of providing digital signatures. US Patent 4309569, January 5
1982.

[37] Pratyay Mukherjee. Protecting Cryptographic Memory against Tampering Attack. PhD
thesis, Aarhus University, 2015.

[38] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM J.
Comput., 41(4):772–814, 2012.

[39] Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel. Leakage-resilient signatures
with graceful degradation. In PKC, pages 362–379, 2014.

[40] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In TCC, pages
262–285, 2016.

32

	Introduction
	Our Contribution
	Additional Related Work

	Preliminaries
	Notation
	Coding Schemes

	Non-Malleability in Bounded Space
	Space-Bounded Tampering
	Achievable Parameters

	Building Blocks
	Random Oracles
	Merkle Commitments
	Graph Pebbling and Labeling

	Non-Interactive Proofs of Space
	NIPoS Definition
	NIPoS Construction
	Security Analysis

	Our Coding Scheme
	Code Construction
	Proof of Security
	Concrete Instantiation and Parameters

	Trading Leakage for Tamper-Proof Security
	Leaky Tamper Simulatability
	Analysis

