Skip to main content

Integrated and Adaptive Locomotion and Manipulation for Self-reconfigurable Robots

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Included in the following conference series:

  • 3351 Accesses

Abstract

Integrated and adaptive locomotion and manipulation (IALM) is a key capability for robots to perform real-world applications in challenging environments. It requires interleaving many tasks, sometimes simultaneously, and switching the functions and roles of body components on demand. For example, for autonomous assembly in space, a multiple-tentacle single body “octopus” may have to become a distributed group of “ant” robots, while a hand-like end-effector useful in one case may have to function as an anchor foot in a different situation. This paper presents a general control framework for coordinating high-dimensional dexterous locomotion and manipulation in self-reconfigurable robotic tree structures. The controller is implemented on the SuperBot robotic system and validated in real-time, high fidelity, physics-based simulation. The results have shown many promising capabilities in high-dimensional, dynamic kinematic control for locomotion, manipulation, and self-reconfiguration essential for future autonomous assembly applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonardi, S., Vespignani, M., Moeckel, R., Ijspeert, A.J.: Collaborative manipulation and transport of passive pieces using the self-reconfigurable modular robots roombots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2406–2412 (2013). doi:10.1109/IROS.2013.6696694

  2. Buss, S.R.: Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)

    Google Scholar 

  3. Castano, A., Shen, W.M., Will, P.: CONRO: towards deployable robots with inter-robots metamorphic capabilities. Autonom. Robots 8(3), 309–324 (2000)

    Article  Google Scholar 

  4. Collins, T., Shen, W.M.: Particle swarm optimization for high-DOF inverse kinematics. In: 2017 IEEE International Conference on Control, Automation, and Robotics, Proceedings, vol. 2, pp. 1049–1054. IEEE (2017)

    Google Scholar 

  5. Durmus, B., Temurtas, H., Gun, A.: An inverse kinematics solution using particle swarm optimization. In: Proceedings of Sixth International Advanced Technologies Symposium, IATS 2011, Turkey, pp. 193–197 (2011)

    Google Scholar 

  6. Giusti, A., Althoff, M.: Automatic centralized controller design for modular and reconfigurable robot manipulators. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3268–3275. IEEE (2015)

    Google Scholar 

  7. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, New York (2013)

    MATH  Google Scholar 

  8. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2000, vol. 2, pp. 995–1001. IEEE (2000)

    Google Scholar 

  9. Moll, M., Will, P., Krivokon, M., Shen, W.M.: Distributed control of the center of mass of a modular robot. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4710–4715. IEEE (2006)

    Google Scholar 

  10. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  11. Rokbani, N., Alimi, A.: Inverse kinematics using particle swarm optimization, a statistical analysis. Procedia Eng. 64, 1602–1611 (2013). doi:10.1016/j.proeng.2013.09.242

    Article  Google Scholar 

  12. Rokbani, N., Alimi, A.M.: IK-PSO, PSO inverse kinematics solver with application to biped gait generation. arXiv preprint arxiv:1212.1798 (2012)

  13. Romanishin, J.W., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4288–4295. IEEE (2013)

    Google Scholar 

  14. Salemi, B., Moll, M., Shen, W.M.: Superbot: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3636–3641. doi:10.1109/IROS.2006.281719 (2006)

  15. Salemi, B., Will, P., Shen, W.M.: Autonomous discovery and functional response to topology change in self-reconfigurable robots. In: Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) Complex Engineered Systems, pp. 364–384. Springer, Heidelberg (2006). doi:10.1007/3-540-32834-3_16

  16. Shen, W.M., Will, P., Galstyan, A., Chuong, C.M.: Hormone-inspired self-organization and distributed control of robotic swarms. Autonom. Robots 17(1), 93–105 (2004)

    Article  Google Scholar 

  17. Sprowitz, A., Pouya, S., Bonardi, S., Van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots: reconfigurable robots for adaptive furniture. Comput. Intell. Mag. IEEE 5(3), 20–32 (2010)

    Article  Google Scholar 

  18. Tang, Z., Bagchi, K.K.: Globally convergent particle swarm optimization via branch-and-bound. Comput. Inf. Sci. 3(4), 60 (2010)

    Google Scholar 

  19. Tonneau, S., Del Prete, A., Pettré, J., Park, C., Manocha, D. et al.: An efficient acyclic contact planner for multiped robots. Rpport LAAS n 16024. 2016. https://hal.archives-ouvertes.fr/hal-01267345v2/document

  20. Yoon, Y., Rus, D.: Shady3D: a robot that climbs 3D trusses. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4071–4076. IEEE (2007)

    Google Scholar 

  21. Yun, S., Rus, D.: Self assembly of modular manipulators with active and passive modules. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1477–1482. IEEE (2008)

    Google Scholar 

  22. Zhu, W.H., Lamarche, T., Dupuis, E., Jameux, D., Barnard, P., Liu, G.: Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans. Rob. 29(5), 1162–1179 (2013). doi:10.1109/TRO.2013.2265631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Joseph Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Collins, T.J., Shen, WM. (2017). Integrated and Adaptive Locomotion and Manipulation for Self-reconfigurable Robots. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics