Abstract
Multimodal clustering is an unsupervised technique for mining interesting patterns in n-adic binary relations or n-mode networks. Among different types of such generalised patterns one can find biclusters and formal concepts (maximal bicliques) for two-mode case, triclusters and triconcepts for three-mode case, closed n-sets for n-mode case, etc. Object-attribute biclustering (OA-biclustering) for mining large binary datatables (formal contexts or two-mode networks) arose by the end of the last decade due to intractability of computation problems related to formal concepts; this type of patterns was proposed as a meaningful and scalable approximation of formal concepts. In this paper, our aim is to present recent advance in OA-biclustering and its extensions to mining multi-mode communities in SNA setting. We also discuss connection between clustering coefficients known in SNA community for one-mode and two-mode networks and OA-bicluster density, the main quality measure of an OA-bicluster. Our experiments with two-, three-, and four-mode large real-world networks show that this type of patterns is suitable for community detection in multi-mode cases within reasonable time even though the number of corresponding n-cliques is still unknown due to computation difficulties. An interpretation of OA-biclusters for one-mode networks is provided as well.
Similar content being viewed by others
Notes
- 1.
- 2.
We omit curly brackets here it what follows implying that {g}′ = g′ and {m}′ = m′.
- 3.
Note that technically (g′, g′) is not an OA-bicluster since (g, g) ∉ I.
- 4.
Here [⋅ ] means Iverson bracket defined as \([P] = \left \{\begin{array}{@{}l@{\quad }l@{}} 1\quad &\text{if }P\text{ is true;}\\ 0\quad &\text{otherwise,} \end{array} \right.\).
- 5.
- 6.
- 7.
There is a small inconsistency in the profiles of women w 14 (Helen) and w 15 (Dorothy), namely between their description in [22] and the downloaded dataset provided at https://networkdata.ics.uci.edu/netdata/html/davis.html, thus according to the latter e 12, e 13 ∈ w 14′ and e 11, e 9 ∈ w 15′.
References
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. Data Min. Knowl. Discov. 11(1), 5–33 (2005). DOI 10.1007/s10618-005-1396-1. http://dx.doi.org/10.1007/s10618-005-1396-1
Akhmatnurov, M., Ignatov, D.I.: Context-aware recommender system based on boolean matrix factorisation. In: Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, pp. 99–110, Clermont-Ferrand, 13–16 October 2015. http://ceur-ws.org/Vol-1466/paper08.pdf
Barabási, A.: Network Science. Cambridge University Press, Cambridge (2016)
Barber, M.J.: Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007). DOI 10.1103/PhysRevE.76.066102. http://link.aps.org/doi/10.1103/PhysRevE.76.066102
Belohlávek, R., Glodeanu, C.V., Vychodil, V.: Optimal factorization of three-way binary data using triadic concepts. Order 30(2), 437–454 (2013). DOI 10.1007/s11083-012-9254-4. http://dx.doi.org/10.1007/s11083-012-9254-4
Belohlávek, R., Trnecka, M.: From-below approximations in boolean matrix factorization: Geometry and new algorithm. J. Comput. Syst. Sci. 81(8), 1678 – 1697 (2015). DOI http://dx.doi.org/10.1016/j.jcss.2015. 06.002. http://www.sciencedirect.com/science/article/pii/S002200001500063X
Belohlávek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010). DOI 10.1016/j.jcss.2009.05.002. http://dx.doi.org/10.1016/j.jcss.2009.05.002
Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Multidimensional networks: foundations of structural analysis. World Wide Web 16(5), 567–593 (2013). DOI 10.1007/s11280-012-0190-4. http://dx.doi.org/10.1007/s11280-012-0190-4
Berlingerio, M., Pinelli, F., Calabrese, F.: Abacus: frequent pattern mining-based community discovery in multidimensional networks. Data Min. Knowl. Discov. 27(3), 294–320 (2013). DOI 10.1007/s10618-013-0331-0. http://dx.doi.org/10.1007/s10618-013-0331-0
Bohman, L.: Bringing the owners back in: an analysis of a 3-mode interlock network. Soc. Netw. 34(2), 275 – 287 (2012). DOI . http://dx.doi.org/10.1016/j.socnet.2012.01.005. //www.sciencedirect.com/science/article/pii/S037887331200007X
Borgatti, S.P., Everett, M.G.: Network analysis of 2-mode data. Soc. Netw. 19(3), 243 – 269 (1997). DOI http://dx.doi.org/10.1016/S0378-8733(96)00301-2. //www.sciencedirect.com/science/article/pii/S0378873396003012
Cerf, L., Besson, J., Robardet, C., Boulicaut, J.: Closed patterns meet n-ary relations. TKDD 3(1), 3:1–3:36 (2009). DOI 10.1145/1497577.1497580. http://doi.acm.org/10.1145/1497577.1497580
Cerf, L., Besson, J., Nguyen, K., Boulicaut, J.: Closed and noise-tolerant patterns in n-ary relations. Data Min. Knowl. Discov. 26(3), 574–619 (2013). DOI 10.1007/s10618-012-0284-8. http://dx.doi.org/10.1007/s10618-012-0284-8
Chatterjee, S., Bhattacharyya, M.: Judgment analysis of crowdsourced opinions using biclustering. Inf. Sci. 375, 138–154 (2017). DOI 10.1016/j.ins.2016.09.036. http://dx.doi.org/10.1016/j.ins.2016.09.036
Cichocki, A., Lee, N., Oseledets, I.V., Phan, A.H., Zhao, Q., Mandic, D.P.: Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4–5), 249–429 (2016). DOI 10.1561/2200000059. http://dx.doi.org/10.1561/2200000059
Codocedo, V., Napoli, A.: Lattice-based biclustering using partition pattern structures. In: ECAI 2014 - 21st European Conference on Artificial Intelligence, 18–22 August 2014, Prague - Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 213–218 (2014). DOI 10.3233/978-1-61499-419-0-213. http://dx.doi.org/10.3233/978-1-61499-419-0-213
Davis A., B.B.G., Gardner, M.R.: Deep South. The University of Chicago Press, Chicago (1941)
Doreian, P., Batagelj, V., Ferligoj, A.: Generalized blockmodeling of two-mode network data. Soc. Netw. 26(1), 29–53 (2004). DOI http://dx.doi.org/10.1016/j.socnet.2004.01.002. //www.sciencedirect.com/science/article/pii/S0378873304000036
Duquenne, V.: Lattice analysis and the representation of handicap associations. Soc. Netw. 18(3), 217–230 (1996). DOI 10.1016/ 0378-8733(95)00274-X. http://www.sciencedirect.com/science/article/pii/037887339500274X
Fararo, T.J., Doreian, P.: Tripartite structural analysis: generalizing the Breiger-Wilson formalism. Soc. Netw. 6(2), 141–175 (1984). DOI http: //dx.doi.org/10.1016/0378-8733(84)90015-7. http://www.sciencedirect.com/science/article/pii/0378873384900157
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). DOI http://dx.doi.org/10.1016/j.physrep.2009.11.002. http://www.sciencedirect.com/science/article/pii/S0370157309002841
Freeman, L.: Finding social groups: a meta-analysis of the southern women data. In: Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, pp. 39–97. National Academy Press, Washington, DC (2003)
Freeman, L.C., White, D.R.: Using galois lattices to represent network data. Sociol. Methodol. 23, 127–146 (1993)
Freeman, L.C.: Cliques, galois lattices, and the structure of human social groups. Soc. Netw. 18, 173–187 (1996)
Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Conceptual Structures: Broadening the Base, Proceedings of the 9th International Conference on Conceptual Structures, ICCS 2001, pp. 129–142, Stanford, CA, 30 July–3 August 2001. DOI 10.1007/3-540-44583-8∖_10. http://dx.doi.org/10.1007/3-540-44583-8_10
Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016). DOI 10.1007/978-3-662-49291-8. http://dx.doi.org/10.1007/978-3-662-49291-8
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer, New York (1999)
Gnatyshak, D., Ignatov, D.I., Semenov, A., Poelmans, J.: Gaining insight in social networks with biclustering and triclustering. In: BIR, pp. 162–171 (2012)
Gnatyshak, D., Ignatov, D.I., Kuznetsov, S.O., Nourine, L.: A one-pass triclustering approach: Is there any room for big data? In: Proceedings of the Eleventh International Conference on Concept Lattices and Their Applications, pp. 231–242, Košice, 7–10 October 2014. http://ceur-ws.org/Vol-1252/cla2014_submission_26.pdf
Hacene, M.R., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013). DOI 10.1007/s10472-012-9329-3. http://dx.doi.org/10.1007/s10472-012-9329-3
Hartigan, J.A.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972). DOI 10.2307/2284710. http://dx.doi.org/10.2307/2284710
Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. In: Information Retrieval - 8th Russian Summer School, RuSSIR 2014, pp. 42–141, Nizhniy, Novgorod, 18–22 August 2014. Revised Selected Papers (2014). DOI 10.1007/978-3-319-25485-2∖_3. http://dx.doi.org/10.1007/978-3-319-25485-2_3
Ignatov, D.I.: Towards a closure operator for enumeration of maximal tricliques in tripartite hypergraphs. CoRR abs/1602.07267 (2016). http://arxiv.org/abs/1602.07267
Ignatov, D.I., Kornilov, D.: RAPS: a recommender algorithm based on pattern structures. In: Proceedings of the 4th International Workshop “What Can FCA Do for Artificial Intelligence?”, FCA4AI 2015, co-located with the International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 87–98, Buenos Aires, 25 July 2015. http://ceur-ws.org/Vol-1430/paper9.pdf
Ignatov, D.I., Kuznetsov, S.O.: Concept-based recommendations for internet advertisement. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proceedings of the CLA 2008, CEUR WS, vol. 433, pp. 157–166. Palacký University, Olomouc (2008)
Ignatov, D.I., Watson, B.W.: Towards a unified taxonomy of biclustering methods. In: Kuznetsov, S.O., Watson, B.W. (eds.) Proceedings of Russian and South African Workshop on Knowledge Discovery Techniques Based on Formal Concept Analysis (RuZA 2015). CEUR Workshop Proceedings, vol. 1552, pp. 23–39 (2015)
Ignatov, D., Kaminskaya, A., Kuznetsov, S., Magizov, R.: A concept-based biclustering algorithm. In: Proceedings of the Eight International Conference on Intelligent Information Processing (IIP-8), pp. 140–143. MAKS Press, Moscow (2010) [in Russian]
Ignatov, D.I., Kuznetsov, S.O., Magizov, R.A., Zhukov, L.E.: From triconcepts to triclusters. In: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing - Proceedings of the 13th International Conference, RSFDGrC 2011, pp. 257–264, Moscow, 25–27 June 2011. DOI 10.1007/978-3-642-21881-1∖_41. http://dx.doi.org/10.1007/978-3-642-21881-1_41
Ignatov, D.I., Kuznetsov, S.O., Poelmans, J.: Concept-based biclustering for internet advertisement. In: ICDM Workshops, pp. 123–130. IEEE Computer Society, Brussels (2012)
Ignatov, D.I., Kuznetsov, S.O., Poelmans, J., Zhukov, L.E.: Can triconcepts become triclusters? Int. J. Gen. Syst. 42(6), 572–593 (2013). DOI 10.1080/03081079.2013.798899. http://dx.doi.org/10.1080/03081079.2013.798899
Ignatov, D.I., Mikhailova, M., Zakirova, A.Y., Malioukov, A.: Recommendation of ideas and antagonists for crowdsourcing platform witology. In: Information Retrieval - 8th Russian Summer School, RuSSIR 2014, pp. 276–296, Nizhniy, Novgorod, 18–22 August 2014, Revised Selected Papers (2014). DOI 10.1007/978-3-319-25485-2∖_9. http://dx.doi.org/10.1007/978-3-319-25485-2_9
Ignatov, D.I., Nenova, E., Konstantinova, N., Konstantinov, A.V.: Boolean matrix factorisation for collaborative filtering: an fca-based approach. In: Artificial Intelligence: Methodology, Systems, and Applications - Proceedings of the 16th International Conference, AIMSA 2014, pp. 47–58, Varna, 11–13 September 2014. DOI 10.1007/978-3-319-10554-3∖_5. http://dx.doi.org/10.1007/978-3-319-10554-3_5
Ignatov, D.I., Kaminskaya, A.Y., Konstantinova, N., Konstantinov, A.V.: Recommender system for crowdsourcing platform witology. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. II, pp. 327–335, Warsaw, 11–14 August 2014. DOI 10.1109/WI-IAT.2014.52. http://dx.doi.org/10.1109/WI-IAT.2014.52
Ignatov, D.I., Kaminskaya, A.Y., Konstantinova, N., Malioukov, A., Poelmans, J.: Fca-based recommender models and data analysis for crowdsourcing platform witology. In: Graph-Based Representation and Reasoning - Proceedings of the 21st International Conference on Conceptual Structures, ICCS 2014, pp. 287–292, Iaşi, 27–30 July 2014. DOI 10.1007/978-3-319-08389-6∖_24. http://dx.doi.org/10.1007/978-3-319-08389-6_24
Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal concept analysis and triclustering: searching for optimal patterns. Mach. Learn. 101(1–3), 271–302 (2015). DOI 10.1007/s10994-015-5487-y. http://dx.doi.org/10.1007/s10994-015-5487-y
Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS–an algorithm for mining iceberg tri-lattices. In: Proceedings of the Sixth International Conference on Data Mining, ICDM ’06, pp. 907–911. IEEE Computer Society, Washington, DC (2006). DOI http://dx.doi.org/10.1109/ICDM.2006.162. http://dx.doi.org/10.1109/ICDM.2006.162
Jelassi, M.N., Yahia, S.B., Nguifo, E.M.: Towards more targeted recommendations in folksonomies. Soc. Netw. Anal. Min. 5(1), 68:1–68:18 (2015). DOI 10.1007/s13278-015-0307-8. http://dx.doi.org/10.1007/s13278-015-0307-8
Jones, I., Tang, L., Liu, H.: Community discovery in multi-mode networks. In: Paliouras, G., Papadopoulos, S., Vogiatzis, D., Kompatsiaris, Y. (eds.) User Community Discovery, pp. 55–74. Springer, Cham (2015). DOI 10.1007/978-3-319-23835-7∖_3. http://dx.doi.org/10.1007/978-3-319-23835-7_3
Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)
Kaytoue, M., Kuznetsov, S.O., Macko, J., Napoli, A.: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70, 55–79 (2014). DOI 10.1007/s10472-013-9379-1. http://liris.cnrs.fr/publis/?id=6292
Krasnov, F., Vlasova, E., Yavorskiy, R.: Connectivity analysis of computer science centers based on scientific publications data for major Russian cities. In: Proceedings of the Second International Conference on Information Technology and Quantitative Management, ITQM 2014, pp. 892–899, National Research University Higher School of Economics (HSE), Moscow, 3–5 June 2014. DOI 10.1016/j.procs.2014.05.341. http://dx.doi.org/10.1016/j.procs.2014.05.341
Krolak-Schwerdt, S., Orlik, P., Ganter, B.: Tripat: a model for analyzing three-mode binary data. In: Bock, H.H., Lenski, W., Richter, M. (eds.) Information Systems and Data Analysis, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 298–307. Springer, Berlin/Heidelberg (1994). DOI 10.1007/978-3-642-46808-7∖_27. http://dx.doi.org/10.1007/978-3-642-46808-7_27
Kuznetsov, S.O.: Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity. Nauchn. Tekh. Inf., Ser.2 (Autom. Doc. Math. Ling.) 12, 21 – 29 (1990)
Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)
Kuznetsov, S.O., Ignatov, D.: Concept stability for constructing taxonomies of web-site users,. In: Obiedkov, S., Roth, C. (eds.) Proceedings of ICFCA 2007 Satellite Workshop on Social Network Analysis and Conceptual Structures: Exploring Opportunities, pp. 19–24. Clermont-Ferrand (2007)
Kuznetsov, S.O., Obiedkov, S.A., Roth, C.: Reducing the representation complexity of lattice-based taxonomies. In: Conceptual Structures: Knowledge Architectures for Smart Applications, Proceedings of the 15th International Conference on Conceptual Structures, ICCS 2007, pp. 241–254, Sheffield, 22–27 July 2007. DOI 10.1007/978-3-540-73681-3∖_18. http://dx.doi.org/10.1007/978-3-540-73681-3_18
Latapy, M., Magnien, C., Vecchio, N.D.: Basic notions for the analysis of large two-mode networks. Soc. Netw. 30(1), 31 – 48 (2008). DOI 10. 1016/j.socnet.2007.04.006. http://www.sciencedirect.com/science/article/pii/S0378873307000494
Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Proceedings of the Third International Conference on Conceptual Structures: Applications, Implementation and Theory, pp. 32–43. Springer, London (1995). http://dl.acm.org/citation.cfm?id=645488.656867
Lijffijt, J., Spyropoulou, E., Kang, B., Bie, T.D.: P-n-rminer: a generic framework for mining interesting structured relational patterns. Int. J. Data Sci. Anal. 1(1), 61–76 (2016). DOI 10.1007/s41060-016-0004-3. http://dx.doi.org/10.1007/s41060-016-0004-3
Liu, X., Murata, T.: Evaluating community structure in bipartite networks. In: Elmagarmid, A.K., Agrawal, D. (eds.) SocialCom/PASSAT, pp. 576–581. IEEE Computer Society, Washington, DC (2010)
Metzler, S., Miettinen, P.: Clustering boolean tensors. Data Min. Knowl. Discov. 29(5), 1343–1373 (2015). DOI 10.1007/s10618-015-0420-3. http://dx.doi.org/10.1007/s10618-015-0420-3
Miettinen, P.: Boolean tensor factorizations. In: 11th IEEE International Conference on Data Mining, ICDM 2011, pp. 447–456, Vancouver, BC, 11–14 December 2011. DOI 10.1109/ICDM.2011.28. http://dx.doi.org/10.1109/ICDM.2011.28
Mirkin, B.: Mathematical Classification and Clustering. Kluwer, Dordrecht (1996)
Mirkin, B.G., Kramarenko, A.V.: Approximate bicluster and tricluster boxes in the analysis of binary data. In: Proceedings of the 13th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, RSFDGrC’11, pp. 248–256. Springer, Berlin/Heidelberg (2011). http://dl.acm.org/citation.cfm?id=2026782.2026831
Mohr, J.W., Duquenne, V.: The Duality of Culture and Practice: Poverty Relief in New York City, 1888–1917. Theory Soc. 26(2/3), 305–356 (1997). Special Double Issue on New Directions in Formalization and Historical Analysis
Murata, T.: Detecting communities from tripartite networks. In: Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.) WWW, pp. 1159–1160. ACM, New York (2010)
Newman, M.E.J.: Scientific collaboration networks. II. shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016,132 (2001). DOI 10.1103/PhysRevE.64.016132. http://link.aps.org/doi/10.1103/PhysRevE.64.016132
Nussbaum, D., Pu, S., Sack, J., Uno, T., Zarrabi-Zadeh, H.: Finding maximum edge bicliques in convex bipartite graphs. Algorithmica 64(2), 311–325 (2012). DOI 10.1007/s00453-010-9486-x. http://dx.doi.org/10.1007/s00453-010-9486-x
Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 34 (2011). DOI 10.1016/j. socnet.2011.07.001. http://www.sciencedirect.com/science/article/pii/S0378873311000360 (in press)
Padilha, V.A., Campello, R.J.G.B.: A systematic comparative evaluation of biclustering techniques. BMC Bioinf. 18(1), 55:1–55:25 (2017). DOI 10.1186/s12859-017-1487-1. http://dx.doi.org/10.1186/s12859-017-1487-1
Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion: Models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. 8(2), 16:1–16:44 (2016). DOI 10.1145/2915921. http://doi.acm.org/10.1145/2915921
Poelmans, J., Elzinga, P., Ignatov, D.I., Kuznetsov, S.O.: Semi-automated knowledge discovery: identifying and profiling human trafficking. Int. J. Gen. Syst. 41(8), 774–804 (2012). DOI 10.1080/03081079.2012.721662. http://dx.doi.org/10.1080/03081079.2012.721662
Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013). DOI 10.1016/j.eswa.2013.05.009. http://dx.doi.org/10.1016/j.eswa.2013.05.009
Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Syst. Appl. 40(16), 6601–6623 (2013). DOI 10.1016/j.eswa.2013.05.007. http://dx.doi.org/10.1016/j.eswa.2013.05.007
Roth, C.: Generalized preferential attachment: towards realistic socio-semantic network models. In: ISWC 4th Intl Semantic Web Conference, Workshop on Semantic Network Analysis, Galway, CEUR-WS Series (ISSN 1613-0073), vol. 171, pp. 29–42 (2005)
Roth, C., Cointet, J.P.: Social and semantic coevolution in knowledge networks. Soc. Netw. 32, 16–29 (2010)
Roth, C., Obiedkov, S.A., Kourie, D.G.: Towards concise representation for taxonomies of epistemic communities. In: Yahia, S.B., Nguifo, E.M., Belohlávek, R. (eds.) CLA. Lecture Notes in Computer Science, vol. 4923, pp. 240–255. Springer, Heidelberg (2006)
Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(2), 383–404 (2008). DOI 10.1142/S0129054108005735. http://dx.doi.org/10.1142/S0129054108005735
Shin, K., Hooi, B., Faloutsos, C.: M-zoom: Fast dense-block detection in tensors with quality guarantees. In: Machine Learning and Knowledge Discovery in Databases - Proceedings of the European Conference, ECML PKDD 2016, Part I, pp. 264–280, Riva del Garda, 19–23 September 2016. DOI 10.1007/978-3-319-46128-1∖_17. http://dx.doi.org/10.1007/978-3-319-46128-1_17
Spyropoulou, E., Bie, T.D., Boley, M.: Interesting pattern mining in multi-relational data. Data Min. Knowl. Discov. 28(3), 808–849 (2014). DOI 10.1007/s10618-013-0319-9. http://dx.doi.org/10.1007/s10618-013-0319-9
Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community evolution in dynamic multi-mode networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 677–685, Las Vegas, NV, 24–27 August 2008. DOI 10.1145/1401890.1401972. http://doi.acm.org/10.1145/1401890.1401972
Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Inf. Fusion 6(1), 83–98 (2005)
Vander Wal, T.: Folksonomy coinage and definition. URL http://vanderwal.net/folksonomy.html. http://vanderwal.net/folksonomy.html (2007). Accessed 12 Mar 2012
Veremyev, A., Prokopyev, O.A., Butenko, S., Pasiliao, E.L.: Exact mip-based approaches for finding maximum quasi-cliques and dense subgraphs. Comput. Optim. Appl. 64(1), 177–214 (2016). DOI 10.1007/s10589-015-9804-y. http://dx.doi.org/10.1007/s10589-015-9804-y
Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)
White, D.R.: Statistical entailments and the galois lattice. Soc. Netw. 18(3), 201–215 (1996). DOI 10.1016/0378-8733(95)00273-1. http://www.sciencedirect.com/science/article/pii/0378873395002731
Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)
Wu, Z., Bu, Z., Cao, J., Zhuang, Y.: Discovering communities in multi-relational networks. In: Paliouras, G., Papadopoulos, S., Vogiatzis, D., Kompatsiaris, Y. (eds.) User Community Discovery, pp. 75–95. Springer, Cham (2015). DOI 10.1007/978-3-319-23835-7∖_4. http://dx.doi.org/10.1007/978-3-319-23835-7_4
Yavorsky, R.: Research challenges of dynamic socio-semantic networks. In: Ignatov, D., Poelmans, J., Kuznetsov, S. (eds.) CEUR Workshop Proceedings, CDUD’11 - Concept Discovery in Unstructured Data, vol. 757, pp. 119–122 (2011)
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977). http://www.jstor.org/stable/3629752
Zakhlebin, I., Semenov, A., Tolmach, A., Nikolenko, S.I.: Detecting opinion polarisation on twitter by constructing pseudo-bimodal networks of mentions and retweets. In: Information Retrieval - 9th Russian Summer School, RuSSIR 2015, pp. 169–178, Saint Petersburg, 24–28 August 2015, Revised Selected Papers (2015). DOI 10.1007/978-3-319-41718-9∖_10. http://dx.doi.org/10.1007/978-3-319-41718-9_10
Zhao, L., Zaki, M.J.: Tricluster: An effective algorithm for mining coherent clusters in 3d microarray data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 694–705, Baltimore, Maryland, 14–16 June 2005. DOI 10.1145/1066157.1066236. http://doi.acm.org/10.1145/1066157.1066236
Zhuk, R., Ignatov, D.I., Konstantinova, N.: Concept learning from triadic data. In: Proceedings of the Second International Conference on Information Technology and Quantitative Management, ITQM 2014, pp. 928–938, National Research University Higher School of Economics (HSE), Moscow, 3–5 June 2014. DOI 10.1016/j.procs.2014.05.345. http://dx.doi.org/10.1016/j.procs.2014.05.345
Zudin, S., Gnatyshak, D.V., Ignatov, D.I.: Putting oac-triclustering on mapreduce. In: Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, pp. 47–58, Clermont-Ferrand, 13–16 October 2015. http://ceur-ws.org/Vol-1466/paper04.pdf
Acknowledgements
We would like to thank our colleagues Rakesh Agrawal, Loïc Cerf, Vincent Duquenne, Santo Fortunato, Bernhard Ganter, Jean-François Boulicaut, Mehdi Kaytoue, Boris Mirkin, Amedeo Napoli, Lhouri Nourine, Engelbert Mephu-Nguifo, Sergei Kuznetsov, Rokia Missaoui, Sergei Obiedkov, Camille Roth, Takeaki Uno, Stanley Wasserman, and Leonid Zhukov for their inspirational discussions or a piece of advice, which directly or implicitly influenced this study. We are grateful to our colleagues from the Laboratory for Internet Studies for their piece of advice as well. The study was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics in 2016 and 2017 and in the Laboratory of Intelligent Systems and Structural Analysis. The first author has also been supported by Russian Foundation for Basic Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix: Experiments with One-Mode Networks
Appendix: Experiments with One-Mode Networks
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Ignatov, D.I., Semenov, A., Komissarova, D., Gnatyshak, D.V. (2017). Multimodal Clustering for Community Detection. In: Missaoui, R., Kuznetsov, S., Obiedkov, S. (eds) Formal Concept Analysis of Social Networks. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-64167-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-64167-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64166-9
Online ISBN: 978-3-319-64167-6
eBook Packages: Computer ScienceComputer Science (R0)