Skip to main content

On Quantum Related-Key Attacks on Iterated Even-Mansour Ciphers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10418))

Abstract

The impacts that quantum computers will have on cryptography have become more and more important to study for not only public key cryptography but also symmetric key cryptography. For example, at ISITA 2012, Kuwakado and Morii showed that an adversary with a quantum computer can recover keys of the Even-Mansour construction in polynomial time by applying Simon’s algorithm. In addition, at CRYPTO 2016, Kaplan et al. showed that Simon’s algorithm can also be used to perform forgery attacks against MACs and exponentially speed-up a slide attack. This paper introduces a tool for finding the period of a function that is periodic up to constant addition and shows that a quantum adversary can use the tool to perform a related-key attack in polynomial time. Our quantum related-key attack is an extension of the quantum slide attack by Kaplan et al. against iterated Even-Mansour ciphers that are implemented on quantum circuits. Although the relationships among keys are strong, our algorithm can recover all the keys of a two-round iterated Even-Mansour cipher in polynomial time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. IACR Cryptology ePrint Archive 2013, 222 (2013). http://eprint.iacr.org/2013/222

  2. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptology 10(3), 151–162 (1997). https://doi.org/10.1007/s001459900025

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC 1996, NY, USA, pp. 212–219 (1996). http://doi.acm.org/10.1145/237814.237866

  4. Kaplan, M.: Quantum attacks against iterated block ciphers. CoRR abs/1410.1434 (2014). http://arxiv.org/abs/1410.1434

  5. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Proceedings of the Advances in Cryptology - CRYPTO 2016–36th Annual International Cryptology Conference, Part II, Santa Barbara, CA, USA, August 14–18, 2016, pp. 207–237 (2016). http://dx.doi.org/10.1007/978-3-662-53008-5_8

  6. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016). http://tosc.iacr.org/index.php/ToSC/article/view/536

  7. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of the IEEE International Symposium on Information Theory, ISIT 13–18, 2010, Austin, Texas, USA, pp. 2682–2685 (2010). http://dx.doi.org/10.1109/ISIT.2010.5513654

  8. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of the International Symposium on Information Theory and its Applications, ISITA 2012, Honolulu, HI, USA, October 28–31, 2012. pp. 312–316 (2012). http://ieeexplore.ieee.org/document/6400943/

  9. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions (abstract). In: Proceedings of the Advances in Cryptology - CRYPTO 1985, Santa Barbara, California, USA, August 18–22, 1985, p. 447 (1985). https://doi.org/10.1007/3-540-39799-X_34

  10. NIST: Advanced encryption standard (AES) FIPS 197 (2001)

    Google Scholar 

  11. NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016)

    Google Scholar 

  12. Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process. Lett. 115(1), 40–44 (2015). http://dx.doi.org/10.1016/j.ipl.2014.08.009

    Article  MATH  Google Scholar 

  13. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017). http://www.rintonpress.com/xxqic17/qic-17-12/0065-0078.pdf

    Google Scholar 

  14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). http://dx.doi.org/10.1137/S0097539795293172

    Article  MathSciNet  MATH  Google Scholar 

  15. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997). http://dx.doi.org/10.1137/S0097539796298637

    Article  MathSciNet  MATH  Google Scholar 

  16. Treger, J., Patarin, J.: Generic attacks on Feistel networks with internal permutations. In: Proceedings of the Progress in Cryptology - AFRICACRYPT 2009, Second International Conference on Cryptology in Africa, Gammarth, Tunisia, June 21–25, 2009, pp. 41–59 (2009). http://dx.doi.org/10.1007/978-3-642-02384-2_4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Hosoyamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hosoyamada, A., Aoki, K. (2017). On Quantum Related-Key Attacks on Iterated Even-Mansour Ciphers. In: Obana, S., Chida, K. (eds) Advances in Information and Computer Security. IWSEC 2017. Lecture Notes in Computer Science(), vol 10418. Springer, Cham. https://doi.org/10.1007/978-3-319-64200-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64200-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64199-7

  • Online ISBN: 978-3-319-64200-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics