
To distribute or not to distribute: the question of

load balancing for performance or energy

Esteban Stafford, Borja Pérez,

Jose Luis Bosque, Ramón Beivide, Mateo Valero

August 25, 2017

Abstract

Heterogeneous systems are nowadays a common choice in the path to
Exascale. Through the use of accelerators they offer outstanding energy
efficiency. The programming of these devices employs the host-device
model, which is suboptimal as CPU remains idle during kernel execu-
tions, but still consumes energy. Making the CPU contribute computing
effort might improve the performance and energy consumption of the sys-
tem. This paper analyses the advantages of this approach and sets the
limits of when its beneficial. The claims are supported by a set of mod-
els that determine how to share a single data-parallel task between the
CPU and the accelerator for optimum performance, energy consumption
or efficiency. Interestingly, the models show that optimising performance
does not always mean optimum energy or efficiency as well. The paper
experimentally validates the models, which represent an invaluable tool
for programmers when faced with the dilemma of whether to distribute
their workload in these systems.

1 Introduction

There is an ever growing interest on heterogeneous systems in the HPC comu-
nity, by integrating GPUs, as they increase the computing power and improve
the energy efficiency of these large systems [10]. The programming of these is
based mainly in frameworks or APIs like CUDA and OpenCL, designed around
the Host-Device programming model. Which relies on offloading data-parallel
sections to the accelerator while the CPU remains idle. During the latter, de-
spite not contributing computational effort to the system, the devices still draw
a significant amount of power, known as static power consumption [6]. This
leads to think that a load-balanced co-excution might be necessary to improve
the efficiency of the system. However, with the above frameworks, co-execution
is possible but far from trivial, and neither is determining the optimal load
balance.

1

The final publication is available at Springer via https://link.springer.com/chapter/10.1007/978-3-319-64203-1_51

Montse Aragues
Texto escrito a máquina
Stafford, E., Pérez, B., Bosque, J., Beivide, R., Valero, M. To distribute or not to distribute: The question of load balancing for performance or energy. A: International European Conference on Parallel and Distributed Computing. "23rd International Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing: Santiago de Compostela, Spain, August 28–September 1, 2017: proceedings". Santiago de Compostela: Springer, 2017, p. 710-722.

Montse Aragues
Texto escrito a máquina

P
o
w

e
r

Time

a) GPU executes alone

P
o
w

e
r

Time

b) GPU and CPU cooperate

CPU
GPU

Figure 1: Power using a host device model versus device cooperation.

Despite the difficulties, co-execution can give benefits in terms of perfor-
mance and energy efficiency. If the task is successfully balanced among the
devices, the computing power of the heterogeneous system is the sum of that of
the devices, consequently improving the performance. Regarding energy con-
sumption, without co-execution idle devices still require energy to operate, called
static energy, consequently reducing the energy efficiency of the heterogeneous
system as a whole. Given the execution of a data-parallel task, Figure 1.a shows
the power consumed by the system when only the GPU is used. The CPU con-
sumes power even though it is only waiting for the GPU. Figure 1.b shows
that the collaboration of the CPU improves performance, as the computation
is finished faster, but might also improve the total energy consumption.

This paper studies, from an analytical point of view, whether co-execution
of a single massively data-parallel kernel in a heterogeneous system with two
devices is beneficial. And how load balancing affects each of the proposed met-
rics: the performance, the energy consumption or the energy efficiency, and if
they can be optimised simultaneously. This allows programmers decide before-
hand on the suitability of co-execution in their applications, thus reducing the
programming effort.

The main contributions of this paper are:

• To aid the programmer to take an early decision on whether it is worth
dividing the workload of a single kernel among the devices of a heteroge-
neous system.

• Obtaining a series of models that allow determining the workload shar-
ing proportion that optimises the performance, energy consumption or
efficiency.

• Conducting an experimental study that proves the validity of the proposed
models. The values given by the models match those of the experiments.

Some proposals can be found in the literature, that allow the CPU and the
accelerator to share the execution of data-parallel sections [12, 5, 8, 2, 3, 7, 9, 15].
These focus on sharing the workload among the devices to maximise perfor-
mance. Some of these include both static [5, 8] and dynamic [2, 3, 7, 9, 15] load
balancing algorithms. In general, these allow optimising only the performance

2

of the systems, ignoring their energy consumption, which is one of the most im-
portant challenges of computers nowadays. There are other approaches to the
problem of optimising the performance of single kernels co-executed on several
devices [16]. But, to the extent of the authors’ knowledge, this paper is the first
that proposes an analytical model that can be used to take an a priori decision
on the suitability of co-execution, taking energy into account.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed load balancing models. Section 3 explains the experimental methodology,
while Section 4 evaluates the proposals. Finally in Section 5, the most important
conclusions are presented.

2 Load Balancing Model

To sustain the claims of this paper, it is necessary to obtain a series of models
and algorithms that allow determining an optimal share of the load among the
computing devices. A definition of a set of concepts and parameters is necessary,
as they characterize both the parallel application and the devices of the system.

• Work-item: in OpenCL is the unit of concurrent execution. This paper
assumes that each one represents the same amount of compute load.

• Total Workload (W): is the number of work-items needed to solve a
problem. It is determined by some input parameters of the application.

• Device Workload (WC ,WG): is the number of work-items assigned to
each device: WC for the CPU and WG for the GPU.

• Processing speeds of devices (SC , SG): are the number of work-items
that each device can execute per time unit, taking into account the com-
munication times.

• Processing speed of the system (ST): is the sum of the speeds of all
the devices in the system.

ST = SC + SG

• Device execution time (TC , TG): is the time required by a device to
complete its assigned workload.

TC =
WC

SC
TG =

WG

SG

• Total execution time (T): is the time required by the whole system to
execute the application, determined by the last device to finish its task.

T = max{TC , TG}

3

• Workload partition (α): dictates the proportion of the total workload
that is given to the CPU. Then, the proportion for the GPU is 1− α.

WC = αW WG = (1− α)W

Based on the above, the total execution time (T) is obtained from the work-
load of each device and their processing speed:

T = max

{
α
W

SC
, (1− α)

W

SG

}
(1)

It is also necessary to model the energetic behaviour of the system, by con-
sidering the specifications of the devices.

• Static power (PSC , P
S
G): is consumed by each device while idle. This is

unavoidable and will be consumed throughout the execution of the appli-
cation.

• Dynamic power (PDC , P
D
G): is consumed when the devices are comput-

ing.

• Device energy (EC , EG): is consumed by each device during the execu-
tion.

• Total energy (E): is the drawn by the heterogeneous system while exe-
cuting the application. And it is the sum of the energy of each device.

The total consumed energy is the addition of the static (first term in Eq 2)
and dynamic (second term in Eq 2) energies. The static energy is consumed
by both devices throughout the execution of the task. Thus is obtained by
multiplying the static power of the devices PSC , PSG by the total execution time
T (Eq 1). The dynamic energy is consumed only when the device is computing.
The dynamic energy of the CPU is PDC TC and PDG TG for the GPU.

E =

[
(PSC + PSG) max

{
α
W

SC
, (1− α)

W

SG

}]
+

[
αPDC

W

SC
+ (1− α)PDG

W

SG

]
(2)

2.1 Optimal Performance Load Balancing

Attending strictly to performance, an ideal load balancing algorithm causes
both devices to take the same time Topt to conclude their assigned workload.
Because none of them incur in idle time waiting for the other to finish.

Topt = TC = TG =
W

ST

The question remains as to which that work distribution is, or what α satis-
fies the above equation. Intuitively, it will depend on the speeds of the devices.

4

In expression 1, it was shown that the execution times of each device are deter-
mined by the workload assigned to them, as well as their processing speed.

TC = α
W

SC
TG = (1− α)

W

SG

Both times are linear with α, so they each define a segment in the range
(0 ≤ α ≤ 1). TC has positive slope and its maximum value is reached at α = 1.
While TG has its maximum value at α = 0 and negative slope. Then, where
both segments cross, both devices are taking the same time to execute, and
therefore the optimal αopt share is found.

αopt
W

SC
= (1− αopt)

W

SG
⇒ αopt(

W

SC
+
W

SG
) =

W

SG
⇒ αopt =

SC
SC + SG

(3)

Finally, it is also possible to determine the gain (or speedup) of the optimal
execution compared to running on each of the devices alone.

GC =
1

αopt
GG =

1

1− αopt

2.2 Optimal Energy Load Balancing

The value of αopt determined by expression 3 tells how to share the workload
between both devices to obtain the best performance. Now it is interesting to
know if this sharing also gives the best energy consumption.

Regarding the total energy of the system (Expression 2), note that it uses
the maximum function. To analyse this, also note that αopt is the turning point
where the CPU finishes earlier than the GPU, and where the maximum is going
to change its result. Then the total energy of the system can be expressed in
a piece-wise manner with two linear segments joined at αopt. This expression
is not differentiable but it is continuous. In order to determine local minima,
three cases have to be analysed.

1. Both segments have positive slope, so α = 0 will give the minimum energy.

2. Both segments have negative slope. Then the minimum is found at α = 1.

3. The slope of the left segment is negative and the right is positive. Then
the minimum occurs at αopt = SC

SC+SG
.

The problem is now finding when each of the cases occur. For this, each
segment has to be analysed separately.

Left side. In the range of (0 < α < αopt) the CPU is being underused. Its
workload is not enough to keep it busy and has to wait for the overworked GPU
to finish. Therefore the execution time is dictated by the GPU, and the energy
of the whole system is:

5

E = (PSC + PSG + PDG)(1− α)
W

SG
+ PDC α

W

SC

To find when the segment has a negative slope, it is differentiated with
respect to α and compared to 0:

dE

dα
= −(PSC + PSG)

W

SG
+ PDC

W

SC
− PDG

W

SG
< 0⇒ SG

SC
<
PSC + PSG + PDG

PDC
(4)

Right side. In the range (αopt < α < 1) the opposite situation occurs. The
CPU is overloaded, taking longer to complete its workload than the GPU. Then
the execution time is determined by the CPU, and the system energy is:

E = (PSC + PSG + PDC)α
W

SC
+ PDG (1− α)

W

SG

As before the slope of the segment is found differentiating, only this time it
is desired to find when the slope is positive.

dE

dα
= (PSC + PSG)

W

SC
+ PDC

W

SC
− PDG

W

SG
> 0⇒ SG

SC
>

PDG
PSC + PSG + PDC

(5)

Satisfying both expressions (4 and 5) means that the third case occurs, where
the minimum energy is found at αopt = SC

SC+SG
. Combining these leads to:

PDG
PSC + PSG + PDC

<
SG
SC

<
PSC + PSG + PDG

PDC
(6)

This indicates that the ratio between the speeds of the devices must lie
within a given range in order for the sharing to make sense from an energy
perspective. The energy consumed in this case can be expressed as:

E =
W

ST
(PSC + PSG + PDC + PDG) (7)

Should the above condition not be satisfied, then it is advisable to use only

one of the devices. If SG

SC
<

PD
G

PS
C
+PS

G
+PD

C

, then the minimum appears at α = 0.

Meaning that using the CPU is pointless, as no matter how small the portion
of work, it is going to waste energy. The consumption in this case is:

E =
W

SG
(PSC + PSG + PDG) (8)

When the condition is not satisfied on the other side: SG

SC
>

PS
C+PS

G+PD
G

PD
C

, the

minimum is found at α = 1. Then it is the CPU that must be used exclusively.
As assigning the smallest workload to the GPU is going to be detrimental to
the energy consumption of the system.

E =
W

SC
· (PSC + PSG + PDC) (9)

6

2.3 Optimal Energy Efficiency Load Balancing

Finally, this section analyses the advantage of co-execution when considering
the energy efficiency. The metric used to evaluate the efficiency is the Energy-
Delay Product (EDP), of the product of the consumed energy and the execution
time of the application. The starting point is then combining the expressions of
time and energy (1 and 2) of the system.

Again, since both expressions include the maximum function they have to
be analysed in pieces. This time, both pieces will be quadratic functions of α,
that may have local extrema at any point in the curve. Therefore it is necessary
to equate the differential to 0 and solve for α.

Left side. If (0 < α < SC

ST
) the expressions for time and energy are

multiplied obtaining the EDP. Differentiating on α and solving the differential
equated to 0 leads to an extreme point at αleft.

αleft =
2SC(PSC + PSG + PDG)− SGPDC
2SC(PSC + PSG + PDG)− 2SGPDC

Right side. Now the range (SC

ST
< α < 1) is considered. Again, combin-

ing the time and energy expressions for this interval gives the EDP, which is
differentiated and equated to 0 to locate the extremum at αright.

αright =
SCP

D
G

2
[
SCPDG − SG(PSC + PSG + PDC)

]
The analysis of both sides shows that determining the minimum EDP is less

obvious than in previous analysis. There are five possible α values. The first
three are, α = 0, αopt and α = 1. But due to the quadratic nature of both parts
of the EDP expression, it is possible to find a local minimum in each of them. As
was shown above, these can occur in αleft and αright. However, these minima
are only relevant if they lie within the appropriate ranges 0 < αleft <

SC

ST
and

SC

ST
< αright < 1. To find the optimum workload share, the energy efficiency is

evaluated at the relevant points, and the best is chosen. Again, if the optimal
α is not 0 or 1, it means that it is advisable to use co-execution.

3 Methodology

To validate the above models, a set of experiments has been carried out on two
different machines. The first machine used for experimentation is composed
of two 2.0 GHz Intel Xeon E5-2620 CPUs with six cores each and a Kepler
GPU. Thanks to the QPI connection the CPUs are treated as a single device.
Therefore, throughout the remainder of this document, any reference to the
CPU of this system includes both processors. The GPU is a NVIDIA K20m
with 13 stream multiprocessors, 2496 cores. The experiments for this system
have been performed with the maximum and minimum frequencies supported
by the GPU: 324 and 758 MHz. Henceforth referenced as Kepler 324 and Kepler

7

758. Increasing the frequency naturally escalates the power consumption and
reduces the execution times, all having an impact in the energy efficiency of the
system. At the lowest frequency, the computing speed of GPU is comparable
to that of the CPU, thus making the system less heterogeneous.

The second system includes one 3.60 GHz Intel i3-4160 CPU with two cores
and a NVIDIA GTX950 with 6 Stream Multiprocessors and 768 cores. Any
reference to this system will be labeled as GTX950.

The experiments have been carried out with a static algorithm. This means
that the work assigned to each device is determined at the beginning of the
execution, allowing full control of how the workload is assigned to each de-
vice. Six benchmarks have been used, four of which are part of the AMD APP
SDK [1](MatMul, NBody, Binomial, Mandelbrot) and two are in-house develop-
ments. One performs a bidimensional Taylor approximation for a set of points
and the other calculates the Gaussian blur of an image. Each application has
been run using a problem size big enough to justify its distribution among the
available devices. For MatMul 12800 by 12800 matrices were used. For NBody
51200 elements were considered for simulation. Binomial uses 20480000 options.
Mandelbrot generates a 20480 by 20480 pixel image. Taylor calculates the ap-
proximation for a mesh of 1000 by 1000 points. Finally, Gaussian performs the
blur on a 8000 by 8000 pixel image using an 81 by 81 pixel filter.

The performance has been measured as the time required to complete the
kernel execution, including data distribution, kernel launch overhead and result
collection. From these times the values for the computational speeds SC and
SG were calculated. Additionaly, the consumed energy must be measured. A
measurement application, named Sauna was developed to, periodically monitor
the different compute devices and gather their power consumption [13]. This
takes advantage of the Running Average Power Limit (RAPL) registers [14] in
Intel CPUS and the NVIDIA Management Library (NVML) [11] for the GPUs.
The sampling rate used for the measurements was 33Hz. To obtain the energy
efficiency of the system, the time and energy measurements must be multiplied,
giving the EDP [4].

4 Experimental Evaluation

This section presents the results of the experiments performed to validate the
models proposed in Section 2. Due to the similar behaviour of MatMul and
Gaussian to that of NBody and Binomial, only the results of the latter are
presented. The four applications executed on the three systems lead to twelve
different scenarios. Table 1 shows the parameters of the models, extracted from
test executions, where the performance is shown normalised to SC . Figures 2,
3 and 4 all have a similar structure, they show the execution time, consumed
energy and EDP of the different benchmarks and the three systems: Kepler 324,
Kepler 758 and GTX950. Note that this last system is referred to the right axis.
The horizontal axis sweeps α from 0, where all the work is done by the GPU,
through 1, where only the CPU is used.

8

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

K
e
p
le

r
T
im

e
 (

s)

G
T
X

9
5
0
 T

im
e
 (

s)

α

Binomial

Kepler 324
Kepler 758

GTX950

 0
 10
 20
 30
 40
 50
 60
 70

 0 0.2 0.4 0.6 0.8 1
 0
 20
 40
 60
 80
 100
 120
 140
 160

K
e
p
le

r
T
im

e
 (

s)

G
T
X

9
5
0
 T

im
e
 (

s)

α

NBody

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

 100

 120

K
e
p
le

r
T
im

e
 (

s)

G
T
X

9
5
0
 T

im
e
 (

s)

α

Mandelbrot

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1
 0

 50

 100

 150

 200

 250

 300

K
e
p
le

r
T
im

e
 (

s)

G
T
X

9
5
0
 T

im
e
 (

s)

α

Taylor

Figure 2: Execution time for each benchmark and system.

Regarding execution time, the first observation that can be made is that all
benchmarks present a minimum time value that depends on the ratio of the
computing speeds of the devices (See Fig. 2). The exact values of α where the
execution time is minimum are listed in Table 1, together with the measured
optimal α. It is noteworhty that the model accurately predicts the results. The
small discrepancies between the model and experiments are due to the interval
with which α was swept.

In the case of the GTX950, with Taylor and Mandelbrot, a larger error is
observed. The explanation is a combination of two factors. For these bench-
marks, the device speed ratio SG

SC
is less than 1, meaning that the CPU is more

productive than the GPU. On the other hand, when the GPU concludes its

Table 1: Model Parameters, theoretical and experimental α values

Machine Benchmark
SG
SC

PS
C PS

G PD
C PD

G αopt Exp. αopt Rel. Error

Kepler 324

Binomial 3.3559 50 16.5 70 27.5 0.23 0.22 4.5%

Nbody 3.1370 50 16.5 50 27.5 0.24 0.22 9%

Mandelbrot 0.8916 50 16.5 70 44 0.53 0.50 6%

Taylor 0.9375 50 16.5 50 29.5 0.52 0.50 4%

Kepler 758

Binomial 7.9220 50 48 70 98.5 0.11 0.10 10%

Nbody 7.9012 50 48 50 105.5 0.11 0.10 10%

Mandelbrot 2.0711 50 48 70 115 0.33 0.30 10%

Taylor 2.2083 50 48 50 103.5 0.31 0.30 3.3%

GTX950

Binomial 9.7893 41 12.5 18 54 0.09 0.06 50%

Nbody 17.7458 33 12 9 76 0.05 0.04 25%

Mandelbrot 0.9730 40 10 7 48 0.51 0.45 13%

Taylor 0.7175 32 12 10.55 46 0.58 0.50 16%

9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.2 0.4 0.6 0.8 1
 0
 1
 2
 3
 4
 5
 6
 7

K
e
p
le

r
E
n
e
rg

y
 (

1
0
0
0
 J

)

G
T
X

9
5
0
 E

n
e
rg

y
 (

1
0
0
0
 J

)

α

Binomial

Kepler 324
Kepler 758

GTX950

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 0.2 0.4 0.6 0.8 1
 0
 1
 2
 3
 4
 5
 6
 7
 8

K
e
p
le

r
E
n
e
rg

y
 (

1
0
0
0
 J

)

G
T
X

9
5
0
 E

n
e
rg

y
 (

1
0
0
0
 J

)

α

NBody

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

K
e
p
le

r
E
n
e
rg

y
 (

1
0
0
0
 J

)

G
T
X

9
5
0
 E

n
e
rg

y
 (

1
0
0
0
 J

)

α

Mandelbrot

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

K
e
p
le

r
E
n
e
rg

y
 (

1
0
0
0
 J

)

G
T
X

9
5
0
 E

n
e
rg

y
 (

1
0
0
0
 J

)

α

Taylor

Figure 3: Total energy consumption for each benchmark and system.

workload, it rises an interrupt that the CPU must handle immediately. And
taking into account that this machine has only two cores, one of them will be
devoted entirely to attending the GPU interruption. The observed error is then
explained because the CPU suffers an overhead that was not included in the
model. This lowers the effective speed of the CPU and the observed value of
αopt, as the GPU has more time to do extra work. This has been experimentally
confirmed, running the benchmarks in one core, leaving the other free to attend
the GPU.

Regarding the energy, the model gives three possibilities for the optimum α
depending on whether the device speed ratio SG

SC
falls within a particular range

or not (Expression 6). Figure 3 shows examples of the three behaviours and
confirm the predictions of the model.

With Binomial and NBody, the minimum energy is consumed with α = 0.
This is because the speed ratio falls on the left side of the range, and conse-
quently both segments in the energy graph have positive slope. In practical
terms this means that although from a pure performance point of view the
CPU contributes, from an energy perspective using it becomes wasteful. On
the Mandelbrot and Taylor benchmarks, and both Kepler 324 and Kepler 758,
the ratio lies within the range. Meaning that the points of optimum energy
consumption and maximum performance coincide in the same αopt. However,
on the GTX950, the ratio falls to the right, indicating that both segments will
have negative slope and the minimum energy will be found at α = 1. That is,
the GPU is wasting energy. These results show that co-execution is only worth
pursuing in four of the twelve analysed cases, two of them benefit of using the
CPU alone, while in the rest using only the GPU is the most advisable solution.

10

Table 2: Theoretical and experimental αopt for energy-efficiency
Machine αopt Binomial Nbody Mandelbrot Taylor

Kepler 324
αopt 0 0.242 0.529 0.516

Exp. αopt 0 0.22 0.5 0.5

Rel. Error 0% 10% 5.8% 3.2%

Kepler 758
αopt 0 0 0.326 0.312

Exp. αopt 0 0 0.3 0.3

Rel. Error 0% 0% 8.6% 4%

GTX950
αopt 0 0.053 0.507 1

Exp. αopt 0 0.06 1 1

Rel. Error 0% 13% 97% 0%

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 0.2 0.4 0.6 0.8 1
 0
 10
 20
 30
 40
 50
 60
 70

K
e
p
le

r
E
D

P
 (

1
0
0
0
0
 J

s)

G
T
X

9
5
0
 E

D
P
 (

1
0
0
0
0
 J

s)

α

Binomial

Kepler 324
Kepler 758

GTX950

 0
 10
 20
 30
 40
 50
 60
 70

 0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

 100

 120

K
e
p
le

r
E
D

P
 (

1
0
0
0
0
 J

s)

G
T
X

9
5
0
 E

D
P
 (

1
0
0
0
0
 J

s)

α

NBody

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
 0
 20
 40
 60
 80
 100
 120
 140

K
e
p
le

r
E
D

P
 (

1
0
0
0
0
 J

s)

G
T
X

9
5
0
 E

D
P
 (

1
0
0
0
0
 J

s)

α

Mandelbrot

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 0.2 0.4 0.6 0.8 1
 0
 100
 200
 300
 400
 500
 600
 700
 800

K
e
p
le

r
E
D

P
 (

1
0
0
0
0
 J

s)

G
T
X

9
5
0
 E

D
P
 (

1
0
0
0
0
 J

s)

α

Taylor

Figure 4: EDP for each benchmark and system.

Finally, regarding the energy efficiency of the system, the model presented
in Section 2 declares five points susceptible of being the optimal workload share.
Namely α = 0, αopt, α = 1, αleft and αright. For the tested benchmarks and
systems, αleft and αright always lie outside their valid ranges, except for αleft
for Binomial on Kepler 324. Studying these points, it was determined that the
minimum EDP would occur at the α values specified in Table 2. This also
presents the corresponding experimental α, extracted from the results shown in
Figure 4.

It can be said that the model for energy efficiency always predicted the
correct α value that minimises the EDP. A second observation reveals that
these points coincide with either the α that maximises performance or the one
that minimises energy. However, the model states that this might not always
be the case as local minimums could be found. In fact, there are many cases,
those with α = 0 or α = 1 in Table 2, where it is better using only one device
to optimise EDP, even when this does not give the optimum performance.

11

5 Conclusion

This paper analyses the advantages of co-execution and load balancing in hetero-
geneous systems when considering three different metrics: performance, energy
consumption and energy efficiency. Through the proposal of a set of analytical
models, it allows determining if co-execution is beneficial in terms of the three
metrics. Since co-execution represents a large programming effort, the use of
these models allow the programmer to predict if such an approach is worth.

From a performance perspective, the model shows that there is always an
advantage in co-execution. It also predicts the gain of this solution. In prac-
tical terms, if the gain is very small it might not be noticeable due to diverse
overheads in the load balancing algorithm. On contrast, when considering en-
ergy consumption or efficiency, the model clearly shows that there are cases in
which it is not advisable to use co-execution. Through experimental evaluation,
the paper shows that the models accurately predict the observed results. The
proposed models consider an ideal load balancing algorithm, this means that
provided that the used algorithm is good enough, the predictions of the models
will be met, regardless of it being static or dynamic.

In the future, it is intended to extend the models to systems with more than
two devices, and consider irregular applications. Also, the experimentation will
be extended to cover other kinds of accelerator devices.

Acknowledgment

This work has been supported by the University of Cantabria (CVE-2014-
18166), the Spanish Science and Technology Commission (TIN2016-76635-C2-
2-R), the European Research Council (G.A. No 321253) and the European
HiPEAC Network of Excellence. The Mont-Blanc project has received funding
from the European Unions Horizon 2020 research and innovation programme
under grant agreement No 671697.

References

[1] AMD Accelerated Parallel Processing (APP) Software Development Kit
(SDK) V3. Last accesed November 2016.

[2] A.P.D. Binotto, C.E. Pereira, and D.W. Fellner. Towards Dynamic Re-
configurable Load-balancing for Hybrid Desktop Platforms. In Proc. of
IPDPS, pages 1–4. IEEE Computer Society, April 2010.

[3] Michael Boyer, Kevin Skadron, Shuai Che, and Nuwan Jayasena. Load Bal-
ancing in a Changing World: Dealing with Heterogeneity and Performance
Variability. In Proc. of the ACM International Conference on Computing
Frontiers, pages 21:1–21:10, 2013.

12

[4] Emilio Castillo, Cristóbal Camarero, Ana Borrego, and Jose Luis Bosque.
Financial applications on multi-CPU and multi-GPU architectures. J. Su-
percomput., 71(2):729–739, February 2015.

[5] Carlos S. de la Lama, Pablo Toharia, Jose Luis Bosque, and Oscar D.
Robles. Static multi-device load balancing for OpenCL. In Proc. of ISPA,
pages 675–682. IEEE C. Soc., 2012.

[6] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and perfor-
mance model. SIGARCH Comp. Arch. News, 38(3):280–289, June 2010.

[7] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,
Chunling Hu, and Keshav Pingali. Adaptive heterogeneous scheduling for
integrated GPUs. In Proc. of PACT. ACM, 2014.

[8] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Trans-
parent CPU-GPU Collaboration for Data-parallel Kernels on Heteroge-
neous Systems. In Proc. of PACT, pages 245–256, Piscataway, NJ, USA,
2013. IEEE Press.

[9] Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. GreenGPU:
A holistic approach to energy efficiency in GPU-CPU heterogeneous archi-
tectures. In 41st Int. Conf. on Parallel Processing, ICPP, 2012.

[10] Sparsh Mittal and Jeffrey S. Vetter. A survey of methods for analyzing and
improving GPU energy efficiency. ACM Comput. Surv., 47(2):19:1–19:23,
August 2014.

[11] NVIDIA. NVIDIA Management Library (NVML). Last accesed April 2016.

[12] Borja Pérez, José Luis Bosque, and Ramón Beivide. Simplifying program-
ming and load balancing of data parallel applications on heterogeneous
systems. In Proc. of the 9th Workshop on General Purpose Processing
using GPU, pages 42–51, 2016.

[13] Borja Pérez, Esteban Stafford, José Luis Bosque, and Ramón Beivide. En-
ergy efficiency of load balancing for data-parallel applications in heteroge-
neous systems. The Journal of Supercomputing, 73(1):330–342, 2017.

[14] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan,
and Eli Weissmann. Power management architecture of the 2nd generation
Intel Core microarchitecture, formerly codenamed Sandy Bridge. In IEEE
Int. Symp. on High-Perf. Chips, 2011.

[15] G. Wang and X. Ren. Power-efficient work distribution method for CPU-
GPU heterogeneous system. In International Symposium on Parallel and
Distributed Processing with Applications, pages 122–129, Sept 2010.

[16] F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen. Understanding co-
running behaviors on integrated CPU/GPU architectures. IEEE Transac-
tions on Parallel and Distributed Systems, 28(3):905–918, March 2017.

13

