Skip to main content

Soft Computing Methods in Transport and Logistics

  • Chapter
  • First Online:
Soft Computing Based Optimization and Decision Models

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 360))

Abstract

The current economic context generates in supply chain management greater demands for flexibility and dynamism. In addition, there is an increase in uncertainty that adds more complexity to the problems associated with planning and management. Soft Computing offers a set of methodologies capable of responding to these challenges. This work provides an overview of transport and logistics problems, as well as the most representative combinatorial optimization models. Specifically, it focuses on the treatment of uncertainty through fuzzy optimization and metaheuristics methodologies. Promising results from the use of this approach suggest emerging areas of application, which are presented and described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anbuudayasankar, S.P., Ganesh, K., Mohapatra, S.: Models for Practical Routing Problems in Logistics. Springer International Publishing (2014)

    Google Scholar 

  2. Archetti, C., Bianchessi, N., Speranza, M.G.: Optimal solutions for routing problems with profits. Discrete Appl. Math. 161(4), 547–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The capacitated team orienteering and profitable tour problems. J. Oper. Res. Soc. 60(6), 831–842 (2009)

    Article  MATH  Google Scholar 

  4. Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)

    Article  Google Scholar 

  5. Archetti, C., Speranza, M.G., Vigo, D.: Vehicle routing: problems, methods, and applications, vol. 18, chapter Vehicle Routing Problem with Profits, pp. 273. SIAM (2014)

    Google Scholar 

  6. Avineri, E.: Soft computing applications in traffic and transport systems: a review. In: Hoffmann, F., Kappen, M., Klawonn, F., Roy, R. (eds.) Soft Computing: Methodologies and Applications. Advances in Soft Computing, vol. 32, pp. 17–25. Springer, Berlin (2005)

    Chapter  Google Scholar 

  7. Baghel, M., Agrawal, S., Silakari, S.: Survey of metaheuristic algorithms for combinatorial optimization. Int J Comput Appl 58(19) (2012)

    Google Scholar 

  8. Bahri, O., Amor, N.B., El-Ghazali, T.: Optimization algorithms for multi-objective problems with fuzzy data. In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 194–201. IEEE (2014)

    Google Scholar 

  9. Balcik, B., Beamon, B.M.: Facility location in humanitarian relief. Int. J. Logistics Res. Appl. 11(2), 101–121 (2008)

    Article  Google Scholar 

  10. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manage. Sci. 17(4), B–141 (1970)

    Google Scholar 

  11. BoussaïD, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brito, J., Expósito, A., Moreno, J.A.: Solving the team orienteering problem with fuzzy scores and constraints. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1614–1620. IEEE (2016)

    Google Scholar 

  13. Brito, J., Moreno, J.A., Verdegay, J.L.: Fuzzy optimization in vehicle routing problems. In: IFSA/EUSFLAT Conference, pp. 1547–1552 (2009)

    Google Scholar 

  14. Brito, J., Moreno, J.A., Verdegay, J.L.: Transport route planning models based on fuzzy approach. Iran. J. Fuzzy Syst. 9(1), 141–158 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Cadenas, J., Canas, M., Garrido, M., Ivorra, C., Liern, V.: Soft-computing based heuristics for location on networks: the p-median problem. Appl. Soft Comput. 11(2), 1540–1547 (2011). The Impact of Soft Computing for the Progress of Artificial Intelligence

    Google Scholar 

  16. Cattaruzza, D., Absi, N., Feillet, D., González-Feliu, J.: Vehicle routing problems for city logistics. EURO J. Transp. Logistics 1–29 (2015)

    Google Scholar 

  17. Caunhye, A.M., Nie, X., Pokharel, S.: Optimization models in emergency logistics: a literature review. Socio-Econ. Plann. Sci. 46(1), 4–13 (2012). Special Issue: Disaster Planning and Logistics: Part 1

    Google Scholar 

  18. Cavar, I., Kavran, Z., Jolic, N.: Intelligent transportation system and night delivery schemes for city logistics. Comput. Technol. Appl. 2(9), 782–787 (2011)

    Google Scholar 

  19. Chen, J.-Q., Li, W.-L., Murata, T.: Particle swarm optimization for vehicle routing problem with uncertain demand. In: 2013 4th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 857–860. IEEE (2013)

    Google Scholar 

  20. Cooper, M.C., Lambert, D.M., Pagh, J.D.: Supply chain management: more than a new name for logistics. Int. J. Logistics Manag. 8(1), 1–14 (1997)

    Article  Google Scholar 

  21. Croom, S., Romano, P., Giannakis, M.: Supply chain management: an analytical framework for critical literature review. Eur. J. Purchasing Supply Manag. 6(1), 67–83 (2000)

    Article  Google Scholar 

  22. Delgado, M., Verdegay, J., Vila, M.: A general model for fuzzy linear programming. Fuzzy Sets Syst. 29, 21–29 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Delgado, M., Verdegay, J.L., Vila, M.A.: Imprecise costs in mathematical programming problems. Control Cybernet 16(2), 113–121 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Dell’Amico, M., Maffioli, F., Värbrand, P.: On prize-collecting tours and the asymmetric travelling salesman problem. Int. Trans. Oper. Res. 2(3), 297–308 (1995)

    Article  MATH  Google Scholar 

  25. Drexl, M., Schneider, M.: A survey of variants and extensions of the location-routing problem. Eur. J. Oper. Res. 241(2), 283–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ehmke, J.: Integration of information and optimization models for routing in city logistics, vol. 177. Springer Science & Business Media (2012)

    Google Scholar 

  27. Ehmke, J.F., Steinert, A., Mattfeld, D.C.: Advanced routing for city logistics service providers based on time-dependent travel times. J. Comput. Sci. 3(4), 193–205 (2012). City Logistics

    Google Scholar 

  28. Eshtehadi, R., Fathian, M., Demir, E.: Robust solutions to the pollution-routing problem with demand and travel time uncertainty. Transp. Res. Part D: Transp. Environ. 51, 351–363 (2017)

    Article  Google Scholar 

  29. Flamini, M., Nigro, M., Pacciarelli, D.: The value of real-time traffic information in urban freight distribution. J. Intell. Transp. Syst. (2017). In press

    Google Scholar 

  30. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N.: Heuristics for the time dependent team orienteering problem: application to tourist route planning. Comput. Oper. Res. 62, 36–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ghaffari-Nasab, N., Ahari, S.G., Ghazanfari, M.: A hybrid simulated annealing based heuristic for solving the location-routing problem with fuzzy demands. Scientia Iranica 20(3), 919–930 (2013)

    Google Scholar 

  32. Golozari, F., Jafari, A., Amiri, M.: Application of a hybrid simulated annealing-mutation operator to solve fuzzy capacitated location-routing problem. Int. J. Adv. Manuf. Technol. 67(5–8), 1791–1807 (2013)

    Article  Google Scholar 

  33. Gunasekaran, A., Kobu, B.: Performance measures and metrics in logistics and supply chain management: a review of recent literature (1995–2004) for research and applications. Int. J. Prod. Res. 45(12), 2819–2840 (2007)

    Article  MATH  Google Scholar 

  34. Guzmán, V.C., Masegosa, A.D., Pelta, D.A., Verdegay, J.L.: Fuzzy models and resolution methods for covering location problems: an annotated bibliography. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 24(04), 561–591 (2016)

    Article  MathSciNet  Google Scholar 

  35. Herrera, F., Verdegay, J.: Three models of fuzzy integer linear programming. Eur. J. Oper. Res. 83(3), 581–593 (1995)

    Article  MATH  Google Scholar 

  36. Hong, X., Jingjing, Q., Xingli, T.: B2c e-commerce vehicle delivery model and simulation. Inf. Technol. J. 12(20), 5891 (2013)

    Article  Google Scholar 

  37. Ko, M., Tiwari, A., Mehnen, J.: A review of soft computing applications in supply chain management. Appl. Soft Comput. 10(3), 661–674 (2010)

    Article  Google Scholar 

  38. Koc, C., Bekta, T., Jabali, O., Laporte, G.: The impact of depot location, fleet composition and routing on emissions in city logistics. Transp. Res. Part B: Methodol. 84, 81–102 (2016)

    Article  Google Scholar 

  39. Kuo, R., Wibowo, B., Zulvia, F.: Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time. Appl. Math. Modell. 40(23), 9990–10001 (2016)

    Article  MathSciNet  Google Scholar 

  40. Lau, H.C.W., Jiang, Z.Z., Ip, W.H., Wang, D.W.: A credibility-based fuzzy location model with hurwicz criteria for the design of distribution systems in b2c e-commerce. Comput. Ind. Eng. 59(4), 873–886 (2010)

    Article  Google Scholar 

  41. Lewczuk, K., Żak, J., Pyza, D., Jacyna-Gołda, I.: Vehicle routing in an urban area: environmental and technological determinants. WIT Trans. Built Environ. 130, 373–384 (2013)

    Article  Google Scholar 

  42. Li, X., Wang, D., Li, K., Gao, Z.: A green train scheduling model and fuzzy multi-objective optimization algorithm. Appl. Math. Modell. 37(4), 2063–2073 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4, Part 1), 1118–1138 (2014)

    Google Scholar 

  44. Lin, C., Choy, K., Ho, G., Lam, H., Pang, G.K., Chin, K.: A decision support system for optimizing dynamic courier routing operations. Expert Syst. Appl. 41(15), 6917–6933 (2014)

    Article  Google Scholar 

  45. Matis, P., Koháni, M.: Very large street routing problem with mixed transportation mode. CEJOR 19(3), 359–369 (2011)

    Article  MATH  Google Scholar 

  46. Matsuda, Y., Nakamura, M., Kang, D., Miyagi, H.: A fuzzy optimal routing problem for sightseeing. IEEJ Trans. Electron. Inf. Syst. 125, 1350–1357 (2005)

    Google Scholar 

  47. McKinnon, P., Cullinane, S., Whiteing, A., Browne, P.: Green Logistics: Improving the Environmental Sustainability of Logistics. Kogan Page (2010)

    Google Scholar 

  48. Mehrjerdi, Y.Z., Nadizadeh, A.: Using greedy clustering method to solve capacitated location-routing problem with fuzzy demands. Eur. J. Oper. Res. 229(1), 75–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Melo, M., Nickel, S., da Gama, F.S.: Facility location and supply chain management: a review. Eur. J. Oper. Res. 196(2), 401–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mendez, C.E.C.: Team Orienteering Problem with Time Windows and Fuzzy Scores. PhD thesis, National Taiwan University of Science and Technology (2016)

    Google Scholar 

  51. Moreno, J.A., Vega, J.M., Verdegay, J.L.: Fuzzy location problems on networks. Fuzzy Sets Syst. 142(3), 393–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Muñoz-Villamizar, A., Montoya-Torres, J.R., Juan, A.A., Cáceres-Cruz, J.: A simulation-based algorithm for the integrated location and routing problem in urban logistics. In: 2013 Winter Simulations Conference (WSC), pp. 2032–2041 (2013)

    Google Scholar 

  53. Nayeem, S.M.A., Pal, M.: The p-center problem on fuzzy networks and reduction of cost. Iran. J. Fuzzy Syst. 5(1), 1–26 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Olsson, J., Woxenius, J.: Localisation of freight consolidation centres serving small road hauliers in a wider urban area: barriers for more efficient freight deliveries in gothenburg. J. Transp. Geogr. 34, 25–33 (2014)

    Article  Google Scholar 

  55. Ordoobadi, S.M.: Development of a supplier selection model using fuzzy logic. Supply Chain Manage. Int. J. 14(4), 314–327 (2009)

    Article  Google Scholar 

  56. Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res. 111(3), 423–447 (1998)

    Article  MATH  Google Scholar 

  57. Pamučar, D., Gigović, L., Ćirović, G., Regodić, M.: Transport spatial model for the definition of green routes for city logistics centers. Environ. Impact Assess. Rev. 56, 72–87 (2016)

    Article  Google Scholar 

  58. Peidro, D., Mula, J., Poler, R., Verdegay, J.-L.: Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets Syst. 160(18), 2640–2657 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Peng, Y., Chen, J.: Vehicle routing problem with fuzzy demands and the particle swarm optimization solution. In: 2010 International Conference on Management and Service Science (MASS), pp. 1–4. IEEE (2010)

    Google Scholar 

  60. Peng, Y., Qian, Y.-M.: A particle swarm optimization to vehicle routing problem with fuzzy demands. J. Convergence Inf. Technol. 5(6), 112–119 (2010)

    Article  Google Scholar 

  61. Prodhon, C., Prins, C.: A survey of recent research on location-routing problems. Eur. J. Oper. Res. 238(1), 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rahimi, M., Baboli, A., Rekik, Y.: Sustainable inventory routing problem for perishable products by considering reverse logistic. IFAC-PapersOnLine 49(12), 949–954 (2016)

    Article  Google Scholar 

  63. Russo, F., Comi, A.: A classification of city logistics measures and connected impacts. Procedia—Soc. Behav. Sci. 2(3), 6355–6365 (2010)

    Article  Google Scholar 

  64. Sheu, J.-B.: Challenges of emergency logistics management. In: Transportation Research Part E: Logistics and Transportation Review, vol. 43, no. 6, pp. 655–659 (2007). Challenges of Emergency Logistics Management

    Google Scholar 

  65. Sheu, J.-B.: An emergency logistics distribution approach for quick response to urgent relief demand in disasters. In: Transportation Research Part E: Logistics and Transportation Review, vol. 43, no. 6, pp. 687–709 (2007). Challenges of Emergency Logistics Management

    Google Scholar 

  66. Sheu, J.-B., Chen, Y.-H., Lan, L.W., et al.: A novel model for quick response to disaster relief distribution. Proc. Eastern Asia Soc. Transp. Stud. 5, 2454–2462 (2005)

    Google Scholar 

  67. Simchi-Levi, D., Chen, X., Bramel, J.: The logic of logistics. Algorithms, and Applications for Logistics and Supply Chain Management, Theory (2005)

    Google Scholar 

  68. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sulieman, D., Jourdan, L., Talbi, E.-G.: Using multiobjective metaheuristics to solve vrp with uncertain demands. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  70. Suzuki, Y.: A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp. Res. Part D: Transp. Environ. 16(1), 73–77 (2011)

    Article  Google Scholar 

  71. Tang, L., Wang, X.: Iterated local search algorithm based on very large-scale neighborhood for prize-collecting vehicle routing problem. Int. J. Adv. Manuf. Technol. 29(11), 1246–1258 (2006)

    Article  Google Scholar 

  72. Taniguchi, E., Kakimoto, Y.: Modelling effects of e-commerce on urban freight transport, chapter Chapter 10, pp. 135–146. emeraldinsight (2004)

    Google Scholar 

  73. Taniguchi, E., Thompson, R., Yamada, T., Duin, R.V.: City Logistics: Network Modelling and Intelligent Transport Systems. Pergamon (2001)

    Google Scholar 

  74. Torres, I., Cruz, C., Verdegay, J.L.: Solving the truck and trailer routing problem with fuzzy constraints. Int. J. Comput. Intell. Syst. 8(4), 713–724 (2015)

    Article  Google Scholar 

  75. Toth, P., Vigo, D.: Vehicle Routing. Society for Industrial and Applied Mathematics. Philadelphia, PA (2014)

    Google Scholar 

  76. Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-period orienteering problem with multiple time windows. Comput. Oper. Res. 37(2), 351–367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 797–809 (1984)

    Google Scholar 

  78. Vansteenwegen, P., Oudheusden, D.V.: The mobile tourist guide: an or opportunity. OR Insight 20(3), 21–27 (2007)

    Article  Google Scholar 

  79. Verdegay, J.: Fuzzy Information and Decision Processes, chapter Fuzzy mathematical programming. North-Holland (1982)

    Google Scholar 

  80. Verdegay, J.L.: Fuzzy optimization: models, methods and perspectives. In: In proceeding 6th IFSA-95 World Congress, pp. 39–71 (1995)

    Google Scholar 

  81. Verdegay, J.L., Yager, R.R., Bonissone, P.P.: On heuristics as a fundamental constituent of soft computing. Fuzzy Sets Syst. 159, 846–855 (2008)

    Article  MathSciNet  Google Scholar 

  82. Verma, M., Shukla, K.K.: Application of fuzzy optimization to the orienteering problem. Adv. Fuzzy Syst. 2015, 8 (2015)

    MathSciNet  Google Scholar 

  83. Visser, J., Nemoto, T., Browne, M.: Home delivery and the impacts on urban freight transport: a review. Procedia—Soc. Behav. Sci. 125, 15–27 (2014)

    Article  Google Scholar 

  84. Wang, S., Ma, Z., Zhuang, B.: Fuzzy location-routing problem for emergency logistics systems. Comput. Modell. New Technol. 18(2), 265–273 (2014)

    Google Scholar 

  85. Wang, Y., Ma, X., Xu, M., Wang, Y., Liu, Y.: Vehicle routing problem based on a fuzzy customer clustering approach for logistics network optimization. J. Intell. Fuzzy Syst. 29, 1427–1442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  86. Wang, Y., Ma, X.L., Wang, Y.H., Mao, H.J., Zhang, Y.: Location optimization of multiple distribution centers under fuzzy environment. J. Zhejiang Univ. Sci. A 13(10), 782–798 (2012)

    Article  Google Scholar 

  87. Wassenhove, L.N.V.: Humanitarian aid logistics: supply chain management in high gear. J. Oper. Res. Soc. (2006)

    Google Scholar 

  88. Wong, B.K., Lai, V.S.: A survey of the application of fuzzy set theory in production and operations management: 1998–2009. Int. J. Prod. Econ. 129(1), 157–168 (2011)

    Article  Google Scholar 

  89. Xiao, S.C., Wu, J.F., He, H., Yang, Z.D., Shen, X.: An emergency logistics transportation path optimization model by using trapezoidal fuzzy. In: 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 199–203 (2014)

    Google Scholar 

  90. Xiong, N., Molina, D., Ortiz, M.L., Herrera, F.: A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int. J. Comput. Intell. Syst. 8(4), 606–636 (2015)

    Article  Google Scholar 

  91. Xu, J., Goncalves, G., Hsu, T.: Genetic algorithm for the vehicle routing problem with time windows and fuzzy demand. In: Evolutionary Computation, 2008, pp. 4125–4129. IEEE (2008)

    Google Scholar 

  92. Zhang, M.-X., Zhang, B., Zheng, Y.-J.: Bio-inspired meta-heuristics for emergency transportation problems. Algorithms 7(1), 15–31 (2014)

    Article  MathSciNet  Google Scholar 

  93. Zhang, S., Lee, C., Chan, H., Choy, K., Wu, Z.: Swarm intelligence applied in green logistics: a literature review. Eng. Appl. Artif. Intell. 37, 154–169 (2015)

    Article  Google Scholar 

  94. Zulvia, F.E., Kuo, R., Hu, T.-L.: Solving cvrp with time window, fuzzy travel time and demand via a hybrid ant colony optimization and genetic algortihm. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness with FEDER funds (TIN2015-70226-R) and supported by Fundación Cajacanarias research funds (project 2016TUR19). Contributions from A. Expósito is supported by the ACIISI of the Gobierno de Canarias and FSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Brito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Brito, J., Castellanos-Nieves, D., Expósito, A., Moreno, J.A. (2018). Soft Computing Methods in Transport and Logistics. In: Pelta, D., Cruz Corona, C. (eds) Soft Computing Based Optimization and Decision Models. Studies in Fuzziness and Soft Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-64286-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64286-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64285-7

  • Online ISBN: 978-3-319-64286-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics