Skip to main content

P-LAG: Location-Aware Group Recommendation for Passive Users

  • Conference paper
  • First Online:
Advances in Spatial and Temporal Databases (SSTD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10411))

Included in the following conference series:

  • 1557 Accesses

Abstract

Consider a group of users who would like to meet to a place in order to participate in an activity together (e.g., meet at a restaurant to dine). Such meeting point queries have been studied in the context of spatial databases, where typically the suggested points are the ones that minimize an aggregate traveling distance. Recently, meeting point queries have been enriched to take as input, besides the locations of users, also some preference criteria (e.g., expressed by some keywords). However, in many applications, a group of users may require a meeting point recommendation without explicitly specifying any preferences. Motivated by this, we study this scenario of group recommendation for such passive users. We use topic modeling to infer the preferences of the group on the different points of interest and combine these preferences with the aggregate spatial distance of the group members to the candidate points for recommendation in a unified search model. Then, we propose an extension of the R-tree index, called TAR-tree, that indexes the topic vectors of the places together with their spatial locations, in order to facilitate efficient group recommendation. We propose and compare three variants of the TAR-tree and a compression technique for the index, that improves its performance. The proposed techniques are evaluated on real data; the results demonstrate the efficiency and effectiveness of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.yelp.com/dataset_challenge.

  2. 2.

    http://www.yelp.com/dataset_challenge.

  3. 3.

    https://foursquare.com/about/.

References

  1. Aggarwal, C.C.: Recommender Systems: The Textbook. Springer, Switzerland (2016)

    Book  Google Scholar 

  2. Ahmed, A., Hong, L., Smola, A.J.: Hierarchical geographical modeling of user locations from social media posts. In: WWW, pp. 25–36. ACM (2013)

    Google Scholar 

  3. Amer-Yahia, S., Roy, S.B., Chawlat, A., Das, G., Yu, C.: Group recommendation: semantics and efficiency. PVLDB 2(1), 754–765 (2009)

    Google Scholar 

  4. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, vol. 19, pp. 322–331. ACM (1990)

    Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430. IEEE (2001)

    Google Scholar 

  7. Chen, L., Lian, X.: Dynamic skyline queries in metric spaces. In: EDBT, pp. 333–343. ACM (2008)

    Google Scholar 

  8. Deng, K., Zhou, X., Tao, H.: Multi-source skyline query processing in road networks. In: ICDE, pp. 796–805. IEEE (2007)

    Google Scholar 

  9. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, H., Tang, J., Liu, H.: gscorr: modeling geo-social correlations for new check-ins on location-based social networks. In: CIKM, pp. 1582–1586. ACM (2012)

    Google Scholar 

  11. Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14. ACM (1984)

    Google Scholar 

  12. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. TODS 24(2), 265–318 (1999)

    Article  Google Scholar 

  13. Hong, L., Ahmed, A., Gurumurthy, S., Smola, A.J., Tsioutsiouliklis, K.: Discovering geographical topics in the twitter stream. In: WWW, pp. 769–778. ACM (2012)

    Google Scholar 

  14. Hu, B., Ester, M.: Spatial topic modeling in online social media for location recommendation. In: ACM RecSys, pp. 25–32. ACM (2013)

    Google Scholar 

  15. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_20

    Chapter  Google Scholar 

  16. Li, K., Lu, W., Bhagat, S., Lakshmanan, L.V., Yu, C.: On social event organization. In: SIGKDD, pp. 1206–1215. ACM (2014)

    Google Scholar 

  17. Li, M., Chen, L., Cong, G., Gu, Y., Yu, G.: Efficient processing of location-aware group preference queries. In: CIKM, pp. 559–568. ACM (2016)

    Google Scholar 

  18. Liu, X., Tian, Y., Ye, M., Lee, W.-C.: Exploring personal impact for group recommendation. In: CIKM, pp. 674–683. ACM (2012)

    Google Scholar 

  19. Liu, Y., Ester, M., Qian, Y., Hu, B., Cheung, D.W.: Microscopic and macroscopic spatio-temporal topic models for check-in data. TKDE (2017)

    Google Scholar 

  20. Lu, Z., Li, H., Mamoulis, N., Cheung, D.W.: Hbgg: a hierarchical Bayesian geographical model for group recommendation. In: SDM (2017)

    Google Scholar 

  21. O’connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: a recommender system for groups of users. In: Prinz, W., Jarke, M., Rogers, Y., Schmidt, K., Wulf, V. (eds.) ECSCW 2001. Springer, Dordrecht (2001). doi:10.1007/0-306-48019-0_11

    Google Scholar 

  22. Omohundro, S.M.: Five balltree construction algorithms. International Computer Science Institute Berkeley (1989)

    Google Scholar 

  23. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312. IEEE (2004)

    Google Scholar 

  24. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813. VLDB Endowment (2003)

    Google Scholar 

  25. Ram, P., Gray, A.G.: Maximum inner-product search using cone trees. In: ACM SIGKDD, pp. 931–939. ACM (2012)

    Google Scholar 

  26. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, vol. 24, pp. 71–79. ACM (1995)

    Google Scholar 

  27. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB, pp. 751–762. VLDB Endowment (2006)

    Google Scholar 

  28. Shi, J., Wu, D., Mamoulis, N.: Textually relevant spatial skylines. TKDE 28(1), 224–237 (2016)

    Google Scholar 

  29. Son, W., Lee, M.-W., Ahn, H.-K., Hwang, S.: Spatial skyline queries: an efficient geometric algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02982-0_17

    Chapter  Google Scholar 

  30. Wu, D., Cong, G., Jensen, C.S.: A framework for efficient spatial web object retrieval. PVLDB 21(6), 797–822 (2012)

    Google Scholar 

  31. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: Lcars: a location-content-aware recommender system. In: SIGKDD, pp. 221–229. ACM (2013)

    Google Scholar 

  32. Yin, H., Zhou, X., Shao, Y., Wang, H., Sadiq, S.: Joint modeling of user check-in behaviors for point-of-interest recommendation. In: CIKM, pp. 1631–1640. ACM (2015)

    Google Scholar 

  33. Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.: Geographical topic discovery and comparison. In: WWW, pp. 247–256. ACM (2011)

    Google Scholar 

  34. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. TKDE 17(6), 820–833 (2005)

    Google Scholar 

  35. Yuan, Q., Cong, G., Lin, C.-Y.: Com: a generative model for group recommendation. In: SIGKDD, pp. 163–172. ACM (2014)

    Google Scholar 

  36. Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Dynamic skyline queries in large graphs. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010, Part II. LNCS, vol. 5982, pp. 62–78. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12098-5_5

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their valuable comments. This work is partially supported by GRF Grants 17201414 and 17205015 from Hong Kong Research Grant Council. It has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 657347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiu Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qian, Y., Lu, Z., Mamoulis, N., Cheung, D.W. (2017). P-LAG: Location-Aware Group Recommendation for Passive Users. In: Gertz, M., et al. Advances in Spatial and Temporal Databases. SSTD 2017. Lecture Notes in Computer Science(), vol 10411. Springer, Cham. https://doi.org/10.1007/978-3-319-64367-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64367-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64366-3

  • Online ISBN: 978-3-319-64367-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics