Abstract
All manufacturing companies need to be able to closely monitor the processes, labor, tooling, parts and throughput on the assembly plant floor. This might be a challenging task because of a large number of plant floor applications that operate using different hardware and software tools. In many cases, there are a large number of devices that need to be monitored and from which critical data must be extracted and analyzed. This situation calls for the use of an architecture that can support data from heterogeneous sources and support the analysis of data and communication with these devices. Ontologies can be developed to facilitate a proper understanding of the problem domain, and subsequently, knowledge from external sources can be shared through linked open data or directly integrated (mapped) using an ontology matching approach. In this paper, we demonstrate how ontological data description may facilitate interoperability between a company data model and new data sources as well as an update of stored data via ontology matching. The MAPSOM system (system for semi-automatic ontology matching) is introduced and described in this paper, and subsequently, an example of new data model integration is demonstrated using the MAPSOM system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Web Ontology Language - https://www.w3.org/OWL.
- 2.
Knowledge Interchange Format - http://www-ksl.stanford.edu/knowledge-sharing/kif.
- 3.
Microsoft Excel https://products.office.com/en-us/excel.
References
Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Comput. Surv. (CSUR) 18(4), 323–364 (1986)
Benerecetti, M., Bouquet, P., Ghidini, C.: On the dimensions of context dependence: partiality, approximation, and perspective. In: Akman, V., Bouquet, P., Thomason, R., Young, R. (eds.) CONTEXT 2001. LNCS, vol. 2116, pp. 59–72. Springer, Heidelberg (2001). doi:10.1007/3-540-44607-9_5
Bernstein, P.A., Melnik, S., Churchill, J.E.: Incremental schema matching. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 1167–1170. VLDB Endowment (2006)
Bouquet, P., Ehrig, M., Euzenat, J., Franconi, E., Hitzler, P., Krotzsch, M., Serafini, L., Stamu, G., Sure, Y., Tessaris, S.: Specification of a Common Framework for Characterizing Alignment (2005)
Euzenat, J.: Towards a principled approach to semantic interoperability. In: Proceedings of IJCAI 2001 Workshop on Ontology and Information Sharing, pp. 19–25 (2001). (No commercial editor)
Euzenat, J., Shvaiko, P., et al.: Ontology Matching, vol. 18. Springer, Heidelberg (2007)
Gruber, T.R., et al.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)
Ichise, R.: Machine learning approach for ontology mapping using multiple concept similarity measures. In: Seventh IEEE/ACIS International Conference on Computer and Information Science, ICIS 2008, pp. 340–346. IEEE (2008)
Standardized product ontology register and transfer by spreadsheets – Part 1: Logical structure for data parcels. International standard, International Electrotechnical Commission, Geneva, CH (2014)
Jirkovský, V., Ichise, R.: MAPSOM: user involvement in ontology matching. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 348–363. Springer, Cham (2014). doi:10.1007/978-3-319-06826-8_26
Jirkovský, V., Obitko, M.: Ontology mapping approach for fault classification in multi-agent systems. IFAC Proc. Vol. 46(9), 951–956 (2013)
Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)
Kohonen, T.: The self-organizing map. Neurocomputing 21(1), 1–6 (1998)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Ostrowski, D., Rychtyckyj, N., MacNeille, P., Kim, M.: Integration of big data using semantic web technologies. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 382–385. IEEE (2016)
Rychtyckyj, N., Raman, V., Sankaranarayanan, B., Kumar, P.S., Khemani, D.: Ontology re-engineering: a case study from the automotive industry. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3974–3981. AAAI Press (2016)
Ultsch, A.: Self-organizing neural networks for visualisation and classification. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and Classification, pp. 307–313. Springer, Heidelberg (1993). doi:10.1007/978-3-642-50974-2_31
Valtchev, P., Euzenat, J.: Dissimilarity measure for collections of objects and values. In: Liu, X., Cohen, P., Berthold, M. (eds.) IDA 1997. LNCS, vol. 1280, pp. 259–272. Springer, Heidelberg (1997). doi:10.1007/BFb0052846
Visser, P.R., Jones, D.M., Bench-Capon, T.J., Shave, M.J.: Assessing heterogeneity by classifying ontology mismatches. In: Proceedings of the FOIS, vol. 98 (1998)
Acknowledgment
This work is supported through the Ford Motor Company University Research Proposal (URP) program and by institutional resources for research by the Czech Technical University in Prague, Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jirkovský, V., Kadera, P., Rychtyckyj, N. (2017). Semi-automatic Ontology Matching Approach for Integration of Various Data Models in Automotive. In: Mařík, V., Wahlster, W., Strasser, T., Kadera, P. (eds) Industrial Applications of Holonic and Multi-Agent Systems. HoloMAS 2017. Lecture Notes in Computer Science(), vol 10444. Springer, Cham. https://doi.org/10.1007/978-3-319-64635-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-64635-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64634-3
Online ISBN: 978-3-319-64635-0
eBook Packages: Computer ScienceComputer Science (R0)