Abstract
Masking schemes achieve provable security against side-channel analysis by using secret sharing to decorrelate key-dependent intermediate values of the cryptographic algorithm and side-channel information. Masking schemes make assumptions on how the underlying leakage mechanisms of hardware or software behave to account for various physical effects. In this paper, we investigate the effect of the physical placement on the security using leakage assessment on power measurements collected from an FPGA. In order to differentiate other masking failures, we use threshold implementations as masking scheme in conjunction with a high-entropy pseudorandom number generator. We show that we can observe differences in—possibly—exploitable leakage by placing functions corresponding to different shares of a cryptographic implementation in close proximity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Research Center for Information Security: National Institute of Advanced Industrial Science and Technology, Side-channel Attack Standard Evaluation Board SASEBO-G Specification. http://satoh.cs.uec.ac.jp/SASEBO/en/board/sasebo-g.html
Research Center for Information Security: National Institute of Advanced Industrial Science and Technology, Side-channel Attack Standard Evaluation Board SASEBO-GII Specification. http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-GII-en.html
Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). doi:10.1007/978-3-319-16763-3_5
Bhooshan, R., Rao, B.P.: Optimum IR drop models for estimation of metal resource requirements for power distribution network. In: VLSI-SoC, pp. 292–295. IEEE (2007)
Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_18
Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient aes threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014). doi:10.1007/978-3-319-06734-6_17
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5_2
Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_20
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_26
Chen, C., Farmani, M., Eisenbarth, T.: A tale of two shares: why two-share threshold implementation seems worthwhile—and why it is not. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 819–843. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6_30
Chen, Z., Haider, S., Schaumont, P.: Side-channel leakage in masked circuits caused by higher-order circuit effects. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 327–336. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02617-1_34
De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order threshold implementation of the aes s-box. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 259–272. Springer, Cham (2016). doi:10.1007/978-3-319-31271-2_16
De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES with \(d+1\) shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2_10
Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test vector leakage assessment (TVLA) methodology in practice. In: International Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
Duan, C., LaMeres, B.J., Khatri, S.P.: On and Off-Chip Crosstalk Avoidance in VLSI Design. Springer, New York (2010). doi:10.1007/978-1-4419-0947-3
Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_18
Dyrkolbotn, G.O., Wold, K., Snekkenes, E.: Security implications of crosstalk in switching cmos gates. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 269–275. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18178-8_23
Dyrkolbotn, G.O., Wold, K., Snekkenes, E.: Layout dependent phenomena a new side-channel power model. JCP 7(4), 827–837 (2012)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1_21
Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011). http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
Goubin, L., Patarin, J.: DES and differential power analysis the “duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_15
Guntur, H., Ishii, J., Satoh, A.: Side-channel attack user reference architecture board sakura-g. In: 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE), pp. 271–274, October 2014
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_27
Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)
Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked aes hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006). doi:10.1007/11894063_7
Moll, F., Roca, M., Isern, E.: Analysis of dissipation energy of switching digital CMOS gates with coupled outputs. Microelectron. J. 34(9), 833–842 (2003)
Moradi, A.: Side-channel leakage through static power. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 562–579. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3_31
Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_6
Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308_38
Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00730-9_14
Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)
Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011)
Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9_5
Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/3-540-45418-7_17
Rabaey, J.M.: Digital Integrated Circuits: A Design Perspective. Prentice-Hall Inc., Upper Saddle River (1996)
Schmidt, J.-M., Plos, T., Kirschbaum, M., Hutter, M., Medwed, M., Herbst, C.: Side-channel leakage across borders. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 36–48. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12510-2_4
Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_25
Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J. Cryptogr. Eng. 6(2), 85–99 (2016)
Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7_27
Trichina, E., Korkishko, T., Lee, K.H.: Small size, low power, side channel-immune AES coprocessor: design and synthesis results. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005). doi:10.1007/11506447_10
Wild, A., Moradi, A., Güneysu, T.: Evaluating the duplication of dual-rail precharge logics on FPGAs. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 81–94. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4_6
Xilinx: Constraints guide 10.1. http://www.xilinx.com/itp/xilinx10/books/docs/cgd/cgd.pdf
Xilinx: Virtex-ii pro and virtex-ii pro x platform fpgas: Complete data sheet. http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
Zussa, L., Exurville, I., Dutertre, J., Rigaud, J., Robisson, B., Tria, A., Clédière, J.: Evidence of an information leakage between logically independent blocks. In: CS2@HiPEAC, pp. 25–30. ACM (2015)
Acknowledgments
This work was supported by NIST with the research grant 60NANB15D346, by the Research Council KU Leuven, OT/13/071 and by the Flemish Government through FWO project Cryptography secured against side-channel attacks by tailored implementations enabled by future technologies (G0842.13). Begül Bilgin and Benedikt Gierlichs are Postdoctoral Fellows of the Fund for Scientific Research - Flanders (FWO). Thomas De Cnudde is funded by a research grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V. (2017). Does Coupling Affect the Security of Masked Implementations?. In: Guilley, S. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2017. Lecture Notes in Computer Science(), vol 10348. Springer, Cham. https://doi.org/10.1007/978-3-319-64647-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-64647-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64646-6
Online ISBN: 978-3-319-64647-3
eBook Packages: Computer ScienceComputer Science (R0)