Abstract
We propose an algorithm that provides a pixel-wise classification of building facades. Building facades provide a rich environment for testing semantic segmentation techniques. They come in a variety of styles affecting appearance and layout. On the other hand, they exhibit a degree of stability in the arrangement of structures across different instances. Furthermore, a single image is often composed of a repetitive architectural pattern. We integrate appearance, layout and repetition cues in a single energy function, that is optimized through the TRW-S algorithm to provide a classification of superpixels. The appearance energy is based on scores of a Random Forrest classifier. The feature space is composed of higher-level vectors encoding distance to structure clusters. Layout priors are obtained from locations and structural adjacencies in training data. In addition, priors result from translational symmetry cues acquired from the scene itself through clustering via the \(\alpha \)-expansion graphcut algorithm. We are on par with state-of-the-art. We are able to fine tune classifications at the superpixel level, while most methods model all architectural features with bounding rectangles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Dang, K., Yuan, J.: Location constrained pixel classifiers for image parsing with regular spatial layout. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)
Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 224–227 (1979)
Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proceedings of the BMVC, pp. 91.1–91.11 (2009)
Jampani, V., Gadde, R., Gehler, P.V.: Efficient 2D and 3D facade segmentation using auto-context. In: Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, WACV 2015, Washington, DC, USA, pp. 1038–1045. IEEE Computer Society (2015)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 65–81. Springer, Heidelberg (2002). doi:10.1007/3-540-47977-5_5
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Martinović, A., Mathias, M., Weissenberg, J., Gool, L.: A three-layered approach to facade parsing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 416–429. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_31
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)
Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 26th International Conference on Machine Learning (ICML) (2011)
Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Shape grammar parsing via reinforcement learning. In: CVPR, pp. 2273–2280. IEEE Computer Society (2011)
Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 364–374. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_39
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fathalla, R., Vogiatzis, G. (2017). Optimization of Facade Segmentation Based on Layout Priors. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10424. Springer, Cham. https://doi.org/10.1007/978-3-319-64689-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-64689-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64688-6
Online ISBN: 978-3-319-64689-3
eBook Packages: Computer ScienceComputer Science (R0)