Abstract
With the proliferation of social networks and photo-sharing websites, the need for an effective image retrieval system has become crucial. To match the users’ intents, retrieval results are expected to be not only relevant to the query but also diverse. In this way, they depict a comprehensive summarization of the user query. Motivated by this observation, we propose a hypergraph-based reranking model for retrieving diverse social images. Indeed, a visual hypergraph is constructed to capture high-order relationships among images. Different from exiting hypergraph ranking that usually ranks images according to their relevance to a given query, our approach emphasizes diversity by integrating absorbing nodes into the ranking process. This way, redundant images are prevented from getting high ranking scores, thereby ensuring diversity. Extensive experiments conducted on the MediaEval 2016 dataset demonstrate that our approach can achieve competitive performance to the existing diversification approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
References
Boteanu, B., Constantin, M., Ionescu, B.: LAPI @ 2016 retrieving diverse social images task: a pseudo-relevance feedback diversification perspective. In: MediaEval 2016 (2016)
Bouhlel, N., Ksibi, A., Ammar, A.B., Amar, C.B.: Semantic-aware framework for mobile image search. In: ISDA 2015, pp. 479–484 (2015)
Bouhlel, N., Ben Ammar, A., Ksibi, A., Ben Amar, C.: Soff: scalable and oriented fast-based local features. In: Proceedings of the SPIE, Ninth International Conference on Machine Vision (ICMV 2016), vol. 10341, pp. 1034102-1–1034102-6 (2017)
Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., He, X.: Music recommendation by unified hypergraph: combining social media information and music content. In: Proceedings of the 18th ACM International Conference on Multimedia (MM 2010), pp. 391–400. ACM, New York (2010)
Cai, J., Zha, Z.J., Wang, M., Zhang, S., Tian, Q.: An attribute-assisted reranking model for web image search. IEEE Trans. Image Process. 24(1), 261–272 (2015)
Castellanos, A., Benavent, X., García-Serrano, A., de Ves Cuenca, E.: UNED-UV @ retrieving diverse social images task. In: MediaEval 2016 (2016)
Cheng, X.Q., Du, P., Guo, J., Zhu, X., Chen, Y.: Ranking on data manifold with sink points. IEEE Trans. Knowl. and Data Eng. 25(1), 177–191 (2013)
Fakhfakh, R., Feki, G., Ammar, A.B., Amar, C.B.: Personalizing information retrieval: a new model for user preferences elicitation. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002091–002096, October 2016
Feki, G., Fakhfakh, R., Bouhlel, N., Ammar, A.B., Amar, C.B.: REGIM @ 2016 retrieving diverse social images task. In: MediaEval 2016 (2016)
Feki, G., Ksibi, A., Ammar, A.B., Amar, C.B.: Improving image search effectiveness by integrating contextual information. In: CBMI 2013, pp. 149–154 (2013)
Feki, G., Ammar, A.B., Amar, C.B.: Adaptive semantic construction for diversity-based image retrieval. In: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (IC3K 2014), pp. 444–449 (2014)
Ferreira, C.D., Calumby, R.T., do C. Araujo, I.B.A., Dourado, Í.C., Muñoz, J.A.V., Penatti, O.A.B., Li, L.T., Almeida, J., Torres, R.: Recod @ mediaeval 2016: diverse social images retrieval. In: MediaEval 2016 (2016)
Gao, Y., Wang, M., Luan, H., Shen, J., Yan, S., Tao, D.: Tag-based social image search with visual-text joint hypergraph learning. In: Proceedings of the ACM Conference on Multimedia, pp. 1517–1520 (2011)
Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 3376–3383, June 2010
Ionescu, B., Gînsca, A., M., Boteanu, B., Lupu, M., Müller, H.: Retrieving diverse social images at mediaeval 2016: challenge, dataset and evaluation. In: MediaEval 2016 (2016)
Ionescu, B., Popescu, A., Radu, A.L., Müller, H.: Result diversification in social image retrieval: a benchmarking framework. Multimed. Tools Appl. 75(2), 1301–1331 (2016)
Ksibi, A., Ben Ammar, A., Ben Amar, C.: Adaptive diversification for tag-based social image retrieval. Int. J. Multimed. Inf. Retr. 3(1), 29–39 (2014). http://dx.doi.org/10.1007/s13735-013-0045-5
Liu, Y., Shao, J., Xiao, J., Wu, F., Zhuang, Y.: Hypergraph spectral hashing for image retrieval with heterogeneous social contexts. Neurocomputing 119, 49–58 (2013). Intelligent Processing Techniques for Semantic-based Image and Video Retrieval
Paramita, M.L., Sanderson, M., Clough, P.: Diversity in photo retrieval: overview of the ImageCLEFPhoto task 2009. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 45–59. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15751-6_6
Spyromitros-Xioufis, E., Papadopoulos, S., Ginsca, A.L., Popescu, A., Kompatsiaris, Y., Vlahavas, I.: Improving diversity in image search via supervised relevance scoring. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (ICMR 2015), pp. 323–330. ACM, New York (2015)
Sunderrajan, S., Manjunath, B.S.: Context-aware hypergraph modeling for re-identification and summarization. IEEE Trans. Multimed. 18(1), 51–63 (2016)
Tian, X., Yang, L., Lu, Y., Tian, Q., Tao, D.: Image search reranking with hierarchical topic awareness. IEEE Trans. Cybern. 45(10), 2177–2189 (2015)
Tollari, S.: UPMC at mediaeval 2016 retrieving diverse social images task. In: MediaEval 2016 (2016)
Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Towards a relevant and diverse search of social images. IEEE Trans. Multimed. 12(8), 829–842 (2010)
Xia, S., Hancock, E.R.: 3D object recognition using hyper-graphs and ranked. In: da Vitoria Lobo, N., et al. (eds.) SSPR/SPR 2008. LNCS, vol. 5342, pp. 117–126. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89689-0_16
Xu, B., Bu, J., Chen, C., Wang, C., Cai, D., He, X.: EMR: a scalable graph-based ranking model for content-based image retrieval. IEEE Trans. Knowl. Data Eng. 27(1), 102–114 (2015)
Zaharieva, M.: An adaptive clustering approach for the diversification of image retrieval results. In: MediaEval 2016 (2016)
Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N.: Query specific rank fusion for image retrieval. IEEE Trans. Pattern Mach. Intell. 37(4), 803–815 (2015)
Zhou, D., Huang, J., Schólkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems (NIPS), p. 19. MIT Press (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bouhlel, N., Feki, G., Ben Ammar, A., Ben Amar, C. (2017). A Hypergraph-Based Reranking Model for Retrieving Diverse Social Images. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10424. Springer, Cham. https://doi.org/10.1007/978-3-319-64689-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-64689-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64688-6
Online ISBN: 978-3-319-64689-3
eBook Packages: Computer ScienceComputer Science (R0)