Skip to main content

Blur Parameter Identification Through Optimum-Path Forest

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10425))

Included in the following conference series:

  • 1828 Accesses

Abstract

Image acquisition processes usually add some level of noise and degradation, thus causing common problems in image restoration. The restoration process depends on the knowledge about the degradation parameters, which is critical for the image deblurring step. In order to deal with this issue, several approaches have been used in the literature, as well as techniques based on machine learning. In this paper, we presented an approach to identify blur parameters in images using the Optimum-Path Forest (OPF) classifier. Experiments demonstrated the efficiency and effectiveness of OPF when compared against some state-of-the-art pattern recognition techniques for blur parameter identification purpose, such as Support Vector Machines, Bayesian classifier and the k-nearest neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All these ranges for both L and \(\sigma \) were empirically chosen.

  2. 2.

    The experiments were conducted on a computer with a Pentium Intel Core i5® 650 3.2 Ghz processor, 4 GB of memory RAM and Linux Ubuntu Desktop LTS 12.04 as the operational system.

References

  1. Mammone, R.J.: Computational Methods of Signal Recovery and Recognition. Wiley, New York (1992)

    Google Scholar 

  2. Shacham, O., Haik, O., Yitzhaky, Y.: Blind restoration of atmospherically degraded images by automatic best step-edge detection. Pattern Recogn. Lett. 28(15), 2094–2103 (2007)

    Article  Google Scholar 

  3. Papa, J.P., Fonseca, L.M.G., de Carvalho, L.A.S.: Projections onto convex sets through particle swarm optimization and its application for remote sensing image restoration. Pattern Recogn. Lett. 31(13), 1876–1886 (2010)

    Article  Google Scholar 

  4. Pires, R.G., Pereira, D.R., Pereira, L.A.M., Mansano, A.F., Papa, J.P.: Projections onto convex sets parameter estimation through harmony search and its application for image restoration. Nat. Comput. 15(3), 493–502 (2016)

    Article  MathSciNet  Google Scholar 

  5. Papa, J.P., Mascarenhas, N.D.A., Fonseca, L.M.G., Bensebaa, K.: Convex restriction sets for cbers-2 satellite image restoration. Int. J. Remote Sens. 29(2), 443–458 (2008)

    Article  Google Scholar 

  6. Katsaggelos, A.K.: Digital Image Restoration. Springer-Verlag New York, Inc., Secaucus (1991)

    Book  Google Scholar 

  7. Zhou, Y.-T., Chellappa, R., Vaid, A., Jenkins, B.K.: Image restoration using a neural network. IEEE Trans. Acoust. Speech Sig. Process. 36(7), 1141–1151 (1988)

    Article  MATH  Google Scholar 

  8. Paik, J.K., Katsaggelos, A.K.: Image restoration using a modified hopfield network. IEEE Trans. Image Process. 1, 49–63 (1992)

    Article  Google Scholar 

  9. Sun, Y., Yu, S.Y.: A modified hopfield neural network used in bilevel image restoration and reconstruction. In: International Symposium on Information Theory Application, vol. 3, pp. 1412–1414 (1992)

    Google Scholar 

  10. Qiao, J., Liu, J.: A SVM-based blur identification algorithm for image restoration and resolution enhancement. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS, vol. 4252, pp. 28–35. Springer, Heidelberg (2006). doi:10.1007/11893004_4

    Chapter  Google Scholar 

  11. Li, D.: Support vector regression based image denoising. Image. Vis. Comput. 27(6), 623–627 (2009)

    Article  Google Scholar 

  12. Xia, Y., Sun, C., Zheng, W.X.: Discrete-time neural network for fast solving large linear l1 estimation problems and its application to image restoration. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 812–820 (2012)

    Article  Google Scholar 

  13. Tang, Y., Salakhutdinov, R., Hinton, G.: Robust boltzmann machines for recognition and denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, 2012, Providence, Rhode Island, USA (2012)

    Google Scholar 

  14. Zhang, G.-D., Yang, X.-H., Xu, H., Lu, D.-Q., Liu, Y.-X.: Image denoising based on support vector machine. In: 2012 Spring Congress on Sarvajanik College of Engineering & Technology, pp. 1–4. IEEE (2012)

    Google Scholar 

  15. Li, D., Mersereau, R.M., Simske, S.: Blind image deconvolution through support vector regression. IEEE Trans. Neural Netw. 18(3), 931–935 (2007)

    Article  Google Scholar 

  16. Papa, J.P., Falcão, A.X.: A new variant of the optimum-path forest classifier. Int. Symp. Vis. Comput. 47(1), 935–944 (2008)

    Google Scholar 

  17. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19(2), 120–131 (2009)

    Article  Google Scholar 

  18. Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised optimum-path forest classification for large datasets. Pattern Recogn. 45(1), 512–520 (2012)

    Article  Google Scholar 

  19. Papa, J.P., Fernandes, S.E.N., Falcão, A.X.: Optimum-path forest based on k-connectivity: theory and applications. Pattern Recogn. Lett. 87, 117–126 (2017). Advances in Graph-based Pattern Recognition

    Article  Google Scholar 

  20. Allène, C., Audibert, J.-Y., Couprie, M., Keriven, R.: Some links between extremum spanning forests, watersheds and min-cuts. Image Vis. Comput. 28(10), 1460–1471 (2010)

    Article  Google Scholar 

  21. Dash, R., Sa, P.K., Majhi, B.: Blur parameter identification using support vector machine. In: Proceedings of the International Conference on Advances in Computer Science, pp. 89–92 (2011)

    Google Scholar 

  22. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  23. Nemenyi, P.: Distribution-free Multiple Comparisons. Princeton University (1963)

    Google Scholar 

  24. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors are grateful to FAPESP grants #2014/16250-9 and #2014/12236-1, CNPq grant #306166/2014-3, as well as CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Papa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pires, R.G., Fernandes, S.E.N., Papa, J.P. (2017). Blur Parameter Identification Through Optimum-Path Forest. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10425. Springer, Cham. https://doi.org/10.1007/978-3-319-64698-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64698-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64697-8

  • Online ISBN: 978-3-319-64698-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics