Skip to main content

A Generic Construction of Secure-Channel Free Searchable Encryption with Multiple Keywords

  • Conference paper
  • First Online:
Network and System Security (NSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10394))

Included in the following conference series:

  • 3344 Accesses

Abstract

In public key encryption with keyword search (PEKS), a secure channel must be required in order to send trapdoors to the server, whereas in secure-channel free PEKS (SCF-PEKS), no such secure channel is required. As an extension of SCF-PEKS, Wang et al. (NSS 2016) proposed SCF-PEKS with multiple keywords (SCF-MPEKS). In this paper, we further extend the Wang et al. result by proposing the generic construction of SCF-MPEKS from hidden vector encryption (HVE), tag-based encryption, and a one-time signature. Our generic construction provides adaptive security, where the test queries are allowed in the security model, and does not require random oracles. On the other hand, the Wang et al. scheme did not consider adaptive security, and the scheme is secure in the random oracle model. We give an instantiation of our generic construction by employing the Park-Lee-Susilo-Lee HVE scheme (Information Sciences 2013). This is the first adaptive secure SCF-MPEKS scheme in the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Usually, wildcards can be specified to be decryption keys in HVE. Phuong et al. [32] considered the opposite case, as in attribute-based encryption, where wildcards can be specified to ciphertexts. They called this type ciphertext policy HVE (CP-HVE), and also called the usual HVE key policy HVE (KP-HVE). Though this paper considers the key policy type of SCF-MPEKS, we can similarly define ciphertext policy type SCF-MPEKS. Then we can employ the Phuong et al. HVE scheme as a building block of the proposed generic construction, and the instantiation provides constant-size ciphertext. We omit the definition and construction here due to the page limitation.

  2. 2.

    Yang and Ma [41] proposed a designated tester PEKS scheme with proxy re-encryption functionality. When the proxy functionality is omitted, then the scheme is regarded as a SCF-MPEKS scheme since it supports conjunctive keyword search. Though it is proved to be secure in the standard model, no adaptive security is considered.

  3. 3.

    In [31], correctness requires wrong attribute consistency where if \(P_{\ell }({\varvec{x}},{\varvec{y}})=0\) then \(\mathsf{HVE.Dec}(tk_{{\varvec{y}}},C_\mathsf{HVE})\) outputs \(\bot \) with overwhelming probability. However, in our SCF-MPEKS construction, this is not necessary since wrong keyword consistency relies on payload hiding of HVE.

  4. 4.

    We give the full description of the SCF-MPEKS instantiation in the full version of this paper due to the page limitation.

References

  1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. J. Cryptology 21(3), 350–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2_28

    Chapter  Google Scholar 

  3. Baek, J., Safavi-Naini, R., Susilo, W.: On the integration of public key data encryption and public key encryption with keyword search. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 217–232. Springer, Heidelberg (2006). doi:10.1007/11836810_16

    Chapter  Google Scholar 

  4. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69839-5_96

    Chapter  Google Scholar 

  5. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient encryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2003). doi:10.1007/3-540-36288-6_7

    Chapter  Google Scholar 

  6. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997). doi:10.1007/BFb0052256

    Chapter  Google Scholar 

  7. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  9. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks on recent keyword search schemes over encrypted data. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006). doi:10.1007/11844662_6

    Chapter  Google Scholar 

  10. Caro, A., Iovino, V., Persiano, G.: Fully secure hidden vector encryption. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 102–121. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36334-4_7

    Chapter  Google Scholar 

  11. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 11(4), 789–798 (2016)

    Google Scholar 

  12. Chen, Y., Zhang, J., Lin, D., Zhang, Z.: Generic constructions of integrated PKE and PEKS. Des. Codes Crypt. 78(2), 493–526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emura, K., Miyaji, A., Omote, K.: Adaptive secure-channel free public-key encryption with keyword search implies timed release encryption. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 102–118. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24861-0_8

    Chapter  Google Scholar 

  14. Emura, K., Miyaji, A., Rahman, M.S., Omote, K.: Generic constructions of secure-channel free searchable encryption with adaptive security. Secur. Commun. Netw. 8(8), 1547–1560 (2015). Cryptology ePrint Archive Report 2013/321

    Article  Google Scholar 

  15. Emura, K., Rahman, M.S.: Constructing secure-channel free searchable encryption from anonymous IBE with partitioned ciphertext structure. In: SECRYPT, pp. 84–93 (2012)

    Google Scholar 

  16. Fang, L., Susilo, W., Ge, C., Wang, J.: A secure channel free public key encryption with keyword search scheme without random oracle. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 248–258. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6_16

    Chapter  Google Scholar 

  17. Fang, L., Susilo, W., Ge, C., Wang, J.: Public key encryption with keyword search secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, C., Zhu, Y.: New efficient searchable encryption schemes from bilinear pairings. Int. J. Netw. Secur. 10(1), 25–31 (2010)

    MathSciNet  Google Scholar 

  19. Gu, C., Zhu, Y., Pan, H.: Efficient public key encryption with keyword search schemes from pairings. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 372–383. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79499-8_29

    Chapter  Google Scholar 

  20. Guo, L., Yau, W.: Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage. J. Med. Syst. 39(2), 11 (2015)

    Article  Google Scholar 

  21. Hattori, M., Hirano, T., Ito, T., Matsuda, N., Mori, T., Sakai, Y., Ohta, K.: Ciphertext-policy delegatable hidden vector encryption and its application to searchable encryption in multi-user setting. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 190–209. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25516-8_12

    Chapter  Google Scholar 

  22. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and its extension to a multi-user system. In: Takagi, T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5_2

    Chapter  Google Scholar 

  23. Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85538-5_5

    Chapter  Google Scholar 

  24. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Crypt. 26(2), 191–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khader, D.: Public key encryption with keyword search based on K-Resilient IBE. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4707, pp. 1086–1095. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74484-9_95

    Chapter  Google Scholar 

  26. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006). doi:10.1007/11681878_30

    Chapter  Google Scholar 

  27. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002). doi:10.1007/3-540-45664-3_4

    Chapter  Google Scholar 

  28. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31815-6_7

    Chapter  Google Scholar 

  29. Park, J.H.: Efficient hidden vector encryption for conjunctive queries on encrypted data. IEEE Trans. Knowl. Data Eng. 23(10), 1483–1497 (2011)

    Article  Google Scholar 

  30. Park, J.H., Lee, D.H.: A hidden vector encryption scheme with constant-size tokens and pairing computations. IEICE Trans. 93–A(9), 1620–1631 (2010)

    Article  Google Scholar 

  31. Park, J.H., Lee, K., Susilo, W., Lee, D.H.: Fully secure hidden vector encryption under standard assumptions. Inf. Sci. 232, 188–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Phuong, T.V.X., Yang, G., Susilo, W.: Efficient hidden vector encryption with constant-size ciphertext. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 472–487. Springer, Cham (2014). doi:10.1007/978-3-319-11203-9_27

    Google Scholar 

  33. Qiu, S., Liu, J., Shi, Y., Zhang, R.: Hidden policy ciphertext-policy attribute-based encryption with keyword search against keyword guessing attack. Sci. China Inf. Sci. 60(5), 052105:1–052105:12 (2017)

    Article  MathSciNet  Google Scholar 

  34. Rhee, H.S., Park, J.H., Lee, D.H.: Generic construction of designated tester public-key encryption with keyword search. Inf. Sci. 205, 93–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable public-key encryption scheme with a designated tester. J. Syst. Softw. 83(5), 763–771 (2010)

    Article  Google Scholar 

  36. Rhee, H.S., Susilo, W., Kim, H.: Secure searchable public key encryption scheme against keyword guessing attacks. IEICE Electron. Expr. 6(5), 237–243 (2009)

    Article  Google Scholar 

  37. Sedghi, S., Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords with wildcards on encrypted data. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4_10

    Chapter  Google Scholar 

  38. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3_46

    Chapter  Google Scholar 

  39. Wang, T., Au, M.H., Wu, W.: An efficient secure channel free searchable encryption scheme with multiple keywords. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 251–265. Springer, Cham (2016). doi:10.1007/978-3-319-46298-1_17

    Chapter  Google Scholar 

  40. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_16

    Chapter  Google Scholar 

  41. Yang, Y., Ma, M.: Conjunctive keyword search with designated tester and timing enabled proxy re-encryption function for E-health clouds. IEEE Trans. Inf. Forensics Secur. 11(4), 746–759 (2016)

    Google Scholar 

  42. Zhang, R., Imai, H.: Combining public key encryption with keyword search and public key encryption. IEICE Trans. 92–D(5), 888–896 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Emura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Emura, K. (2017). A Generic Construction of Secure-Channel Free Searchable Encryption with Multiple Keywords. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds) Network and System Security. NSS 2017. Lecture Notes in Computer Science(), vol 10394. Springer, Cham. https://doi.org/10.1007/978-3-319-64701-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64701-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64700-5

  • Online ISBN: 978-3-319-64701-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics