Skip to main content

Adaptively Secure Hierarchical Identity-Based Encryption over Lattice

  • Conference paper
  • First Online:
Network and System Security (NSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10394))

Included in the following conference series:

Abstract

Quantum computer is regarded as a threat to the cryptosystem at present. Lattice with a rich mathematics structure gave a choice for building post-quantum secure hierarchical identity-based encryption (HIBE) system. But in the existing works, there are many shortcomings such as large public/private key space and weak security model. To overcome these shortcomings, a method for delegating a short lattice basis is discussed in this paper. It maintains the lattice dimension is constant. This distinct feature is used to construct the secure HIBE. The issued scheme has many advantages over the available, such as short public/private keys, achieving adaptive security. It is fair that our scheme is the first one which achieves both constant size private key space and adaptive security. In addition, we also convert our scheme from an one-bit version to an N-bit version. Based learning with errors (LWE) problem, we prove the security in the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  2. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS), pp. 356–365. IEEE press, New York (2002). doi:10.1007/s00037-007-0234-9

  3. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing(STOC 2009), pp. 333–342. ACM, New York (2009). doi:10.1145/1536414.1536461

  4. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). doi:10.1007/BFb0054868

    Chapter  Google Scholar 

  5. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  6. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), pp. 187–196. ACM, New York (2008). doi:10.1145/1374376.1374406

  7. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_14

    Chapter  Google Scholar 

  8. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2_8

    Chapter  Google Scholar 

  9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing (STOC), pp. 169–178. ACM, New York (2009). doi:10.1145/1536414.1536440

  10. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) Advances in Cryptology-CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7-6

    Chapter  Google Scholar 

  11. Singh, K., Rangan, C.P., Banerjee, A.K.: Efficient lattice HIBE in the standard model with shorter public parameters. In: Linawati, Mahendra, M.S., Neuhold, E.J., Tjoa, A.M., You, I. (eds.) Information and Communication Technology, ICT-EurAsia 2014. LNCS, vol. 8407. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55032-4-56

  12. Agrawal, S., Boyen, X., Vaikunthanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or, fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) CPKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8-17

    Chapter  Google Scholar 

  13. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9-29

    Chapter  Google Scholar 

  14. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2_34

    Chapter  Google Scholar 

  15. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_14

    Chapter  Google Scholar 

  16. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639_26

    Chapter  Google Scholar 

  17. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  18. Zhang, L.Y., Wu, Q., Hu, Y.: Hierarchical identity-based encryption with constant size ciphertexts. ETRI J. 34(1), 142–145 (2012). doi:10.4218/etrij.12.0211.0140

    Article  Google Scholar 

  19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  20. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  21. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees or, how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012). doi:10.1007/s00145-011-9105-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Singh, K., Pandurangan, C., Banerjee, A.K.: Adaptively secure efficient lattice (H)IBE in standard model with short public parameters. In: Bogdanov, A., Sanadhya, S. (eds.) SPACE 2012. LNCS, pp. 153–172. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34416-9_11

    Chapter  Google Scholar 

  23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). doi:10.1007/11426639_7

    Chapter  Google Scholar 

  24. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective, vol. 671. Kluwer Academic Publishers, Boston (2002)

    Book  MATH  Google Scholar 

  25. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: Proceedings of FOCS 2004, pp. 372–381. IEEE press, New York (2004). doi:10.1109/FOCS.2004.72

  26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM, New York (2005). doi:10.1145/1060590.1060603

  27. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report 2009/359 (2009). http://eprint.iacr.org/

Download references

Acknowledgments

This work was supported in part by the Nature Science Foundation of China under Grant (61472307, 61402112, 61100165, 61100231), Natural Science Basic Research Plan in Shaanxi Province of China (Program NO. 2016JM6004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyou Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, L., Wu, Q. (2017). Adaptively Secure Hierarchical Identity-Based Encryption over Lattice. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds) Network and System Security. NSS 2017. Lecture Notes in Computer Science(), vol 10394. Springer, Cham. https://doi.org/10.1007/978-3-319-64701-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64701-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64700-5

  • Online ISBN: 978-3-319-64701-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics