Skip to main content

Ground-Truth Tracking Data Generation Using Rotating Real-World Objects

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 693))

Abstract

Quantitative comparison of feature matchers/trackers is essential in 3D computer vision as the accuracy of spatial algorithms mainly depends on the quality of feature matching. This paper shows how a structured-light applying turntable-based evaluation system can be developed. The key problem here is the highly accurate calibration of scanner components. The ground truth (GT) tracking data generation is carried out for seven testing objects. It is shown how the OpenCV3 feature matchers can be compared on our GT data, and the obtained quantitative results are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://vision.middlebury.edu/.

  2. 2.

    These arms are can also move, but their calibration is not considered here, it is a possible future work.

  3. 3.

    The BRIEF descriptor is not invariant to rotation, however, we hold it in the set of testing algorithms as it surprisingly served good results.

  4. 4.

    OpenCV’s documentation is not very informative about Hamming2 distance. They suggest the usage of that for ORB features. However, it can be applied for other possible descriptors, therefore all possible combinations are tried in our tests.

  5. 5.

    Many researchers have informed us that the OpenCV MSER implementation is not perfect.

  6. 6.

    Feature track length is defined as the number of images on which the feature appears.

  7. 7.

    http://web.eee.sztaki.hu.

References

  1. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_8

    Chapter  Google Scholar 

  2. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_16

    Chapter  Google Scholar 

  3. Anwar, H., Din, I., Park, K.: Projector calibration for 3D scanning using virtual target images. Int. J. Precis. Eng. Manuf. 13(1), 125–131 (2012)

    Article  Google Scholar 

  4. Audet, S., Okutomi, M.: A user-friendly method to geometrically calibrate projector-camera systems. In: Computer Vision and Pattern Recognition Workshops, pp. 47–54 (2009)

    Google Scholar 

  5. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  7. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  8. Bradley, C., Vickers, G., Tlusty, J.: Automated rapid prototyping utilizing laser scanning and free-form machining. CIRP Ann. - Manuf. Technol. 41(1), 437–440 (1991)

    Article  Google Scholar 

  9. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  10. Fischler, M., Bolles, R.: Random sampling consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 358–367 (1981)

    Google Scholar 

  11. Fitzgibbon, A.W., Cross, G., Zisserman, A.: Automatic 3D model construction for turn-table sequences. In: Koch, R., Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, pp. 155–170. Springer, Heidelberg (1998). doi:10.1007/3-540-49437-5_11

    Chapter  Google Scholar 

  12. Forssén, P.-E., Lowe, D.G.: Shape descriptors for maximally stable extremal regions. In: ICCV. IEEE (2007)

    Google Scholar 

  13. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94(3), 335–360 (2011)

    Article  MATH  Google Scholar 

  14. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst.: CVIU 68(2), 146–157 (1997)

    Article  Google Scholar 

  15. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  16. Draréni, J., Roy, P.S.S.: Geometric video projector auto-calibration. In: Proceedings of the IEEE International Workshop on Projector-Camera Systems, pp. 39–46 (2009)

    Google Scholar 

  17. Kazo, C., Hajder, L.: High-quality structured-light scanning of 3D objects using turntable. In: IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom), pp. 553–557 (2012)

    Google Scholar 

  18. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: an accurate o(n) solution to the pnp problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  19. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2548–2555 (2011)

    Google Scholar 

  20. Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes. CoRR (2015)

    Google Scholar 

  21. Liao, J., Cai, L.: A calibration method for uncoupling projector and camera of a structured light system. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 770–774 (2008)

    Google Scholar 

  22. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, pp. 1150–1157 (1999)

    Google Scholar 

  23. Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the 11th European Conference on Computer Vision: Part II, pp. 183–196 (2010)

    Google Scholar 

  24. Martynov, I., Kamarainen, J.-K., Lensu, L.: Projector calibration by “Inverse Camera Calibration”. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 536–544. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21227-7_50

    Chapter  Google Scholar 

  25. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of BMVC, pp. 36.1–36.10 (2002)

    Google Scholar 

  26. Moreno, D., Taubin, G.: Simple, accurate, and robust projector-camera calibration. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15 October 2012, pp. 464–471 (2012)

    Google Scholar 

  27. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)

    Google Scholar 

  28. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25(3), 935–944 (2006)

    Article  Google Scholar 

  29. Ortiz, R.: FREAK: fast retina keypoint. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)

    Google Scholar 

  30. Pablo Alcantarilla (Georgia Institute of Technology), Jesus Nuevo (TrueVision Solutions AU), A.B. Fast explicit diffusion for accelerated features in nonlinear scale spaces. In Proceedings of the British Machine Vision Conference. BMVA Press (2013)

    Google Scholar 

  31. Pal, C.J., Weinman, J.J., Tran, L.C., Scharstein, D.: On learning conditional random fields for stereo - exploring model structures and approximate inference. Int. J. Comput. Vis. 99(3), 319–337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Park, S.-Y., Park, G.G.: Active calibration of camera-projector systems based on planar homography. In: ICPR, pp. 320–323 (2010)

    Google Scholar 

  33. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Internation Conference on Computer Vision, pp. 1508–1515 (2005)

    Google Scholar 

  34. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: International Conference on Computer Vision (2011)

    Google Scholar 

  35. Sadlo, F., Weyrich, T., Peikert, R., Gross, M.H.: A practical structured light acquisition system for point-based geometry and texture. In: 2005 Proceedings of Symposium on Point Based Graphics, Stony Brook, NY, USA, pp. 89–98 (2005)

    Google Scholar 

  36. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In Proceedings of Pattern Recognition - 36th German Conference, GCPR 2014, Münster, Germany, 2–5 September 2014, pp. 31–42 (2014)

    Google Scholar 

  37. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  38. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR, vol. 1, pp. 195–202 (2003)

    Google Scholar 

  39. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17–22 June 2006, pp. 519–528, NY, USA, New York (2006)

    Google Scholar 

  40. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2012)

    Google Scholar 

  41. Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  42. Tomasi, C., Shi, J.: Good features to track. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  43. Xu, Y., Aliaga, D.G.: Robust pixel classification for 3d modeling with structured light. In: Proceedings of the Graphics Interface 2007 Conference, 28–30 May 2007, pp. 233–240. Montreal, Canada (2007)

    Google Scholar 

  44. Yamauchi, K., Saito, H., Sato, Y.: Calibration of a structured light system by observing planar object from unknown viewpoints. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  45. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Hungarian National Research, Development and Innovation Office under the grant VKSZ_14-1-2015-0072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Hajder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pusztai, Z., Hajder, L. (2017). Ground-Truth Tracking Data Generation Using Rotating Real-World Objects. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64870-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64869-9

  • Online ISBN: 978-3-319-64870-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics