Abstract
Quantitative comparison of feature matchers/trackers is essential in 3D computer vision as the accuracy of spatial algorithms mainly depends on the quality of feature matching. This paper shows how a structured-light applying turntable-based evaluation system can be developed. The key problem here is the highly accurate calibration of scanner components. The ground truth (GT) tracking data generation is carried out for seven testing objects. It is shown how the OpenCV3 feature matchers can be compared on our GT data, and the obtained quantitative results are also discussed in detail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
These arms are can also move, but their calibration is not considered here, it is a possible future work.
- 3.
The BRIEF descriptor is not invariant to rotation, however, we hold it in the set of testing algorithms as it surprisingly served good results.
- 4.
OpenCV’s documentation is not very informative about Hamming2 distance. They suggest the usage of that for ORB features. However, it can be applied for other possible descriptors, therefore all possible combinations are tried in our tests.
- 5.
Many researchers have informed us that the OpenCV MSER implementation is not perfect.
- 6.
Feature track length is defined as the number of images on which the feature appears.
- 7.
References
Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_8
Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_16
Anwar, H., Din, I., Park, K.: Projector calibration for 3D scanning using virtual target images. Int. J. Precis. Eng. Manuf. 13(1), 125–131 (2012)
Audet, S., Okutomi, M.: A user-friendly method to geometrically calibrate projector-camera systems. In: Computer Vision and Pattern Recognition Workshops, pp. 47–54 (2009)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
Bradley, C., Vickers, G., Tlusty, J.: Automated rapid prototyping utilizing laser scanning and free-form machining. CIRP Ann. - Manuf. Technol. 41(1), 437–440 (1991)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_56
Fischler, M., Bolles, R.: Random sampling consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 358–367 (1981)
Fitzgibbon, A.W., Cross, G., Zisserman, A.: Automatic 3D model construction for turn-table sequences. In: Koch, R., Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, pp. 155–170. Springer, Heidelberg (1998). doi:10.1007/3-540-49437-5_11
Forssén, P.-E., Lowe, D.G.: Shape descriptors for maximally stable extremal regions. In: ICCV. IEEE (2007)
Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94(3), 335–360 (2011)
Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst.: CVIU 68(2), 146–157 (1997)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)
Draréni, J., Roy, P.S.S.: Geometric video projector auto-calibration. In: Proceedings of the IEEE International Workshop on Projector-Camera Systems, pp. 39–46 (2009)
Kazo, C., Hajder, L.: High-quality structured-light scanning of 3D objects using turntable. In: IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom), pp. 553–557 (2012)
Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: an accurate o(n) solution to the pnp problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2548–2555 (2011)
Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes. CoRR (2015)
Liao, J., Cai, L.: A calibration method for uncoupling projector and camera of a structured light system. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 770–774 (2008)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, pp. 1150–1157 (1999)
Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the 11th European Conference on Computer Vision: Part II, pp. 183–196 (2010)
Martynov, I., Kamarainen, J.-K., Lensu, L.: Projector calibration by “Inverse Camera Calibration”. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 536–544. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21227-7_50
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of BMVC, pp. 36.1–36.10 (2002)
Moreno, D., Taubin, G.: Simple, accurate, and robust projector-camera calibration. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15 October 2012, pp. 464–471 (2012)
Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)
Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25(3), 935–944 (2006)
Ortiz, R.: FREAK: fast retina keypoint. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)
Pablo Alcantarilla (Georgia Institute of Technology), Jesus Nuevo (TrueVision Solutions AU), A.B. Fast explicit diffusion for accelerated features in nonlinear scale spaces. In Proceedings of the British Machine Vision Conference. BMVA Press (2013)
Pal, C.J., Weinman, J.J., Tran, L.C., Scharstein, D.: On learning conditional random fields for stereo - exploring model structures and approximate inference. Int. J. Comput. Vis. 99(3), 319–337 (2012)
Park, S.-Y., Park, G.G.: Active calibration of camera-projector systems based on planar homography. In: ICPR, pp. 320–323 (2010)
Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Internation Conference on Computer Vision, pp. 1508–1515 (2005)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: International Conference on Computer Vision (2011)
Sadlo, F., Weyrich, T., Peikert, R., Gross, M.H.: A practical structured light acquisition system for point-based geometry and texture. In: 2005 Proceedings of Symposium on Point Based Graphics, Stony Brook, NY, USA, pp. 89–98 (2005)
Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In Proceedings of Pattern Recognition - 36th German Conference, GCPR 2014, Münster, Germany, 2–5 September 2014, pp. 31–42 (2014)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR, vol. 1, pp. 195–202 (2003)
Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17–22 June 2006, pp. 519–528, NY, USA, New York (2006)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2012)
Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Tomasi, C., Shi, J.: Good features to track. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Xu, Y., Aliaga, D.G.: Robust pixel classification for 3d modeling with structured light. In: Proceedings of the Graphics Interface 2007 Conference, 28–30 May 2007, pp. 233–240. Montreal, Canada (2007)
Yamauchi, K., Saito, H., Sato, Y.: Calibration of a structured light system by observing planar object from unknown viewpoints. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Acknowledgement
This work was partially supported by the Hungarian National Research, Development and Innovation Office under the grant VKSZ_14-1-2015-0072.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pusztai, Z., Hajder, L. (2017). Ground-Truth Tracking Data Generation Using Rotating Real-World Objects. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-64870-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64869-9
Online ISBN: 978-3-319-64870-5
eBook Packages: Computer ScienceComputer Science (R0)