Skip to main content

TESSERACT: Time-Drifts in Event Streams Using Series of Evolving Rolling Averages of Completion Times

  • Conference paper
  • First Online:
Business Process Management (BPM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10445))

Included in the following conference series:

Abstract

Business processes are dynamic and change due to diverse factors. While existing approaches aim to detect drifts in the process structure, TESSERACT looks for temporal drifts in activity interim times. This orthogonal view on the process extends the traditional data cube of events - case id, activities and timestamps - by a fourth dimension and improves the operational support by a visualization of temporal drifts in real-time.

Insights about temporal deviations lead to an augmented awareness of imminent failures or improved service times. The detection of related structural concept drifts can be improved by early warning, as operation times of critical parts often increase before they catastrophically fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

    Article  Google Scholar 

  2. Backus, P., Janakiram, M., Mowzoon, S., Runger, C., Bhargava, A.: Factory cycle-time prediction with a data-mining approach. IEEE Trans. Semicond. Manuf. 19(2), 252–258 (2006)

    Article  Google Scholar 

  3. Bolt, A., Sepúlveda, M.: Process remaining time prediction using query catalogs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 54–65. Springer, Cham (2014). doi:10.1007/978-3-319-06257-0_5

    Chapter  Google Scholar 

  4. Bose, R.P., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

    Article  Google Scholar 

  5. Bose, R.P.J.C., Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21640-4_30

    Chapter  Google Scholar 

  6. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics miners for streaming event data (2012). arXiv:1212.6383

  7. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from event streams. In: Congress on Evolutionary Computation (IEEE WCCI CEC) (2014)

    Google Scholar 

  8. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task monitoring for business processes. In: International Conference on Business Process Management, pp. 424–432. Springer (2014)

    Google Scholar 

  9. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34156-4_10

    Chapter  Google Scholar 

  10. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015)

    Google Scholar 

  11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: Practically better than bloom. In: Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies, pp. 75–88. ACM (2014)

    Google Scholar 

  12. Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M.: On predicting traveling times in scheduled transportation. In: Proceedings of the 2nd International Conference on Mining Urban Data, Vol. 1392, pp. 88–89. CEUR-WS. org (2015)

    Google Scholar 

  13. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from event streams using sequential pattern mining. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 1366–1373 (2015)

    Google Scholar 

  14. Maaradji, A., Dumas, M., Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). doi:10.1007/978-3-319-23063-4_27

    Chapter  Google Scholar 

  15. Kuma, M.V.M., Thomas, L., Annappa, B: Capturing the sudden concept drift in process mining. In: BPM Workshops, pp. 132–143 (2015)

    Google Scholar 

  16. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 816–823. IEEE (2014)

    Google Scholar 

  17. Schlimmer, J.C., Granger, R.H.: Beyond incremental processing: Tracking concept drift. In: National Conference AI, pp. 502–507 (1986)

    Google Scholar 

  18. Schubert, E., Weiler, M., Kriegel, H.-P.: Signitrend: scalable detection of emerging topics in textual streams by hashed significance thresholds. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 871–880. ACM (2014)

    Google Scholar 

  19. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – Predicting delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6_4

    Chapter  Google Scholar 

  20. van der Aalst, W.: Process Mining: Data science in action. Springer, Heidelberg (2016)

    Google Scholar 

  21. Van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  22. van Dongen, B.F.: Bpi challenge 2017 - offer log (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Richter, F., Seidl, T. (2017). TESSERACT: Time-Drifts in Event Streams Using Series of Evolving Rolling Averages of Completion Times. In: Carmona, J., Engels, G., Kumar, A. (eds) Business Process Management. BPM 2017. Lecture Notes in Computer Science(), vol 10445. Springer, Cham. https://doi.org/10.1007/978-3-319-65000-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65000-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64999-3

  • Online ISBN: 978-3-319-65000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics