Skip to main content

Visualization-Driven Approach to Anomaly Detection in the Movement of Critical Infrastructure

  • Conference paper
  • First Online:
Computer Network Security (MMM-ACNS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10446))

  • 1309 Accesses

Abstract

Detection of anomalies in employees’ movement represents an area of considerable interest for cyber-physical security applications. In the paper the visual analytics approach to detection of the spatiotemporal patterns and anomalies in organization stuff movement is proposed. The key elements of the approach are interactive self-organizing maps used to detect groups of employees with similar behavior and heat map applied to detect anomalies. They are supported by a set of the interactive interconnected visual models aimed to present spatial and temporal route patterns. We demonstrate our approach with an application to the VAST MiniChallenge-2 2016 data set, which describes movement of the employees within organization building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Millonig, A., Maierbrugger, M.: Identifying unusual pedestrian movement behavior in public transport infrastructures. In: Proceedings of Movement Pattern Analysis Workshop (MPA2010), pp. 106–110. Zurich (2010)

    Google Scholar 

  2. Lerman, Y., Rofe, Y., Omer, I.: Using space syntax to model pedestrian movement in urban transportation planning. Geogr. Anal. 46(4), 392–410 (2014)

    Article  Google Scholar 

  3. Pan, X., Han, C., Dauber, K., Law, K.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. AI Soc. 22, 113–132 (2007)

    Article  Google Scholar 

  4. Vast Challenge Homepage. http://vacommunity.org/. Accessed 10 Mar 2017

  5. Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering: a survey. In: Data Mining and Knowledge Discovery Handbook, pp. 855–874 (2010)

    Google Scholar 

  6. Andrienko, N., Andrienko, G.: Visual analytics of movement: an overview of methods, tools and procedures. Inf. Vis. 12(1), 3–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Novikova, E., Kotenko, I.: Analytical visualization techniques for security information and event management. In: Proceedings of 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp. 519–525 (2013)

    Google Scholar 

  8. Schreck, T., Bernard, J., Von Landesberger, T., Kohlhammer, J.: Visual cluster analysis of trajectory data with interactive Kohonen maps. Inf. Vis. 8(1), 14–29 (2009)

    Article  Google Scholar 

  9. Andrienko, G., Andrienko, N.: Exploration of massive movement data: a visual analytics approach. In: Proceedings of 11th AGILE International Conference on Geographic Information Science (2008)

    Google Scholar 

  10. Guo, H., et al.: Tripvista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: Proceedings of IEEE Pacific Visualization Symposium (PacificVis), pp. 163–170 (2011)

    Google Scholar 

  11. Sander, N., Abel, J., Bauer, R., Schmidt, J.: Visualising migration flow data with circular plots. In: European Population Conference (2014)

    Google Scholar 

  12. Andrienko, G., Andrienko, N., Schumann, H., Tominski, C.: Visualization of trajectory attributes in space–time cube and trajectory wall. In: Buchroithner, M., Prechtel, N., Burghardt, D. (eds.) Lecture Notes in Geoinformation and Cartography. Cartography from Pole to Pole, pp. 157–163. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Guo, C., et al.: Dodeca-rings map: interactively finding patterns and events in large geo-temporal data. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 353–354 (2014)

    Google Scholar 

  14. Kohonen, T., Honkela, T.: Kohonen network. http://www.scholarpedia.org/article/Kohonen_network. Accessed 10 Mar 2017

  15. Ultsch, A.: Self-organizing neural networks for visualization and classification. Information and Classification, pp. 307–313 (1993)

    Google Scholar 

Download references

Acknowledgement

This research has been supported by grant of the RFBR # 16-07-00625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia Novikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Novikova, E., Murenin, I. (2017). Visualization-Driven Approach to Anomaly Detection in the Movement of Critical Infrastructure. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K. (eds) Computer Network Security. MMM-ACNS 2017. Lecture Notes in Computer Science(), vol 10446. Springer, Cham. https://doi.org/10.1007/978-3-319-65127-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65127-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65126-2

  • Online ISBN: 978-3-319-65127-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics