Skip to main content

Fish Classification in Context of Noisy Images

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 744))

  • 3420 Accesses

Abstract

In this paper, we analysed the performance of deep convolutional neural networks on noisy images of fish species. Thorough experiments using four variants of noisy and challenging dataset was carried out. Different deep convolutional models were evaluated. Firstly, we trained models on noisy dataset of fishing boat images. Our second approach trained the models on a new dataset generated by annotating fish instances only from the initial set of images. Lastly, we trained the models by synthesizing more data through the application of affine transforms and random noise. Results indicate that deep convolutional network performance deteriorate in the absence of well annotated training set. This opens direction for future research in automatic image annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com.

  2. 2.

    http://www.imageclef.org/lifeclef/2016/sea.

  3. 3.

    https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring.

  4. 4.

    https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring.

  5. 5.

    http://sloth.readthedocs.io/en/latest/.

  6. 6.

    http://www.nvidia.com/object/deep-learning-system.html.

  7. 7.

    https://keras.io/.

  8. 8.

    https://www.tensorflow.org/.

References

  1. Benson, B., Cho, J., Goshorn, D., Kastner, R.: Field programmable gate array (FPGA) based fish detection using Haar classifiers. Am. Acad. Underwater Sci. (2009)

    Google Scholar 

  2. Boudhane, M., Nsiri, B.: Underwater image processing method for fish localization and detection in submarine environment. J. Vis. Commun. Image Represent. 39, 226–238 (2016)

    Article  Google Scholar 

  3. Demertzis, K., Iliadis, L.: Detecting invasive species with a bio-inspired semi-supervised neurocomputing approach: the case of lagocephalus sceleratus. Neural Comput. Appl. 1–10

    Google Scholar 

  4. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 766–774 (2014)

    Google Scholar 

  5. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2154 (2014)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Hossain, E., Alam, S.S., Ali, A.A., Amin, M.A.: Fish activity tracking and species identification in underwater video. In: 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 62–66. IEEE (2016)

    Google Scholar 

  8. Lantsova, E., Voitiuk, T., Zudilova, T., Kaarna, A.: Using low-quality video sequences for fish detection and tracking. In: SAI Computing Conference (SAI), pp. 426–433. IEEE (2016)

    Google Scholar 

  9. Li, X., Shang, M., Hao, J., Yang, Z.: Accelerating fish detection and recognition by sharing CNNs with objectness learning. In: OCEANS 2016-Shanghai, pp. 1–5. IEEE (2016)

    Google Scholar 

  10. Li, X., Shang, M., Qin, H., Chen, L.: Fast accurate fish detection and recognition of underwater images with fast R-CNN. In: OCEANS 2015-MTS/IEEE Washington, pp. 1–5. IEEE (2015)

    Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  12. Matai, J., Kastner, R., Cutter Jr., G.R., Demer, D.A.: Automated techniques for detection and recognition of fishes using computer vision algorithms. In: Williams K., Rooper C., Harms, J. (eds.) NOAA Technical Memorandum NMFS-F/SPO-121, Report of the National Marine Fisheries Service Automated Image Processing Workshop, Seattle, Washington, 4–7 September 2010 (2010)

    Google Scholar 

  13. Nguyen, N.D., Huynh, K.N., Vo, N.N., van Pham, T.: Fish detection and movement tracking. In: 2015 International Conference on Advanced Technologies for Communications (ATC), pp. 484–489. IEEE (2015)

    Google Scholar 

  14. Ogunlana, S.O., Olabode, O., Oluwadare, S.A.A., Iwasokun, G.B.: Fish classification using support vector machine. Afr. J. Comput. ICT 8(2), 75–82 (2015)

    Google Scholar 

  15. Papp, D., Lovas, D., Szűcs, G.: Object detection, classification, tracking and individual recognition for sea images and videos

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  17. Rodrigues, M.T., Freitas, M.H., Pádua, F.L., Gomes, R.M., Carrano, E.G.: Evaluating cluster detection algorithms and feature extraction techniques in automatic classification of fish species. Pattern Anal. Appl. 18(4), 783–797 (2015)

    Google Scholar 

  18. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y.H.J., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of the First ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, pp. 45–50. ACM (2010)

    Google Scholar 

  21. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  22. Zhang, D., Kopanas, G., Desai, C., Chai, S., Piacentino, M.: Unsupervised underwater fish detection fusing flow and objectiveness. In: 2016 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 1–7. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adamu Ali-Gombe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ali-Gombe, A., Elyan, E., Jayne, C. (2017). Fish Classification in Context of Noisy Images. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics