Skip to main content

A Programmable Mechanical Freedom and Variable Stiffness Soft Actuator with Low Melting Point Alloy

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

Abstract

Soft robotic technologies have been widely used in the fields like bio-robotics, wearable devices, and industrial manipulations. However, existing soft robots usually require multiple pneumatic/fluidic channels for pressurizing soft material segments in series or in parallel to achieve multiple mechanical degrees of freedom. In this study, we demonstrated a soft actuator embedded with Low-Melting-Point Alloy (LMPA), with which the mechanical degrees and stiffness can be selectively controlled. The LMPA was embedded in the bottom of the actuator, with the Ni-Cr wires serpentining under different positions of the LMPA layer. Through a reheating- recrystallizing circle, the actuator can self-heal and recover from the crack state. The melting process of the LMPA under different currents and different sections, the variable stiffness, the self-healing properties, and the programmable mechanical freedom of the actuator was explored through experiments. The results showed that the LMPA could be melted about 10 s under the current of 0.7 A. With the LMPA, the bending force and the elasticity modulus of the actuator could be enhanced up to 16 times and 4,000 times separately. Moreover, up to six motion patterns could be achieved under the same air pressure inflated to a typical single-chamber soft actuator. The combination of Low-Melting-Point Alloy and the soft actuators may open up a diversity of applications for future soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  2. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  3. Mac Murray, B.C., An, X., Robinson, S.S., van Meerbeek, I.M., O’Brien, K.W., Zhao, H., Shepherd, R.F.: Poroelastic foams for simple fabrication of complex soft robots. Adv. Mater. 27(41), 6334–6340 (2015)

    Article  Google Scholar 

  4. Lauder, G.V., Wainwright, D.K., Domel, A.G., Weaver, J.C., Wen, L., Bertoldi, K.: Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys. Rev. Fluids 1(6), 060502 (2016)

    Article  Google Scholar 

  5. Ren, Z., Yang, X., Wang, T., Wen, L.: Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed. Bioinspir. Biomim. 1(1), 016008 (2016)

    Article  Google Scholar 

  6. Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016)

    Article  Google Scholar 

  7. Wen, L., Weaver, J., Lauder, G.: Biomimetic shark skin: design, fabrication and hydrodynamic testing. J. Exp. Biol. 217(10), 1637–1638 (2014)

    Article  Google Scholar 

  8. Wen, L., Weaver, J., Thornycroft, P.M., Lauder, G.: Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing. Bioinspir. Biomim. 10(6), 066010 (2015)

    Article  Google Scholar 

  9. Polygerinos, P., Wang, Z., Overvelde, J.T., Galloway, K.C., Wood, R.J., Bertoldi, K., Walsh, C.J.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Rob. 31(3), 778–789 (2015)

    Article  Google Scholar 

  10. Connolly, F., Polygerinos, P., Walsh, C.J., Bertoldi, K.: Mechanical programming of soft actuators by varying fiber angle. Soft Robot. 2(1), 26–32 (2015)

    Article  Google Scholar 

  11. Arabagi, V., Felfoul, O., Gosline, A.H., Wood, R.J., Dupont, P.E.: Biocompatible pressure sensing skins for minimally invasive surgical instruments. IEEE Sens. J. 16(5), 1294–1303 (2016)

    Article  Google Scholar 

  12. Marchese, A.D., Tedrake, R., Rus, D.: Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int. J. Robot. Res. 35(8), 1000–1019 (2015)

    Article  Google Scholar 

  13. Hao, Y., Gong, Z., Xie, Z., Guan, S., Yang, X., Ren, Z., Wang, T., Wen, L.: Universal soft pneumatic robotic gripper with variable effective length. In: 35th Chinese Control Conference (CCC), Cheng Du, China, pp. 6109–6114. IEEE (2016)

    Google Scholar 

  14. Bartlett, N.W., Tolley, M.T., Overvelde, J.T., Weaver, J.C., Mosadegh, B., Bertoldi, K., Whitesides, G.M., Wood, R.J.: A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015)

    Article  Google Scholar 

  15. Park, Y.L., Chen, B.R., Young, D., Stirling, L., Wood, R.J., Goldfield, E.C., Nagpal, R.: Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir. Biomim. 9(1), 016007 (2014)

    Article  Google Scholar 

  16. Ranzani, T., Gerboni, G., Cianchetti, M., Menciassi, A.: A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10(3), 035008 (2015)

    Article  Google Scholar 

  17. Gong, Z., Xie, Z., Yang, X., Wang, T., Wen, L.: Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm. In: 2016 IEEE International Conference on Robotics and Biomimetics, Qing Dao, China, pp. 509–514. IEEE (2016)

    Google Scholar 

  18. Pettersson, A., Davis, S., Gray, J.O., Dodd, T.J., Ohlsson, T.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98(3), 332–338 (2010)

    Article  Google Scholar 

  19. Taniguchi, H., Miyake, M., Suzumori, K.: Development of new soft actuator using magnetic intelligent fluids for flexible walking robot. In: 2010 International Conference on Control Automation and Systems (ICCAS), Gyeonggi-do, Korea, pp. 1797–1801 (2010)

    Google Scholar 

  20. Wei, Y., Chen, Y., Ren, T., Chen, Q., Yan, C., Yang, Y., Li, Y.: A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 3(3), 134–143 (2016)

    Article  Google Scholar 

  21. Wall, V., Deimel, R., Brock, O.: Selective stiffening of soft actuators based on jamming. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, pp. 252–257. IEEE (2015)

    Google Scholar 

  22. Yang, Y., Chen, Y.: Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, pp. 195–200, June 2016

    Google Scholar 

  23. Firouzeh, A., Salerno, M., Paik, J.: Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF actuation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1117–1124. IEEE (2015)

    Google Scholar 

  24. Galloway, K.C., Polygerinos, P., Walsh, C.J., et al.: Mechanically programmable bend radius for fiber-reinforced soft actuators. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 1–6. IEEE (2013)

    Google Scholar 

  25. Martinez, R.V., Fish, C.R., Chen, X., et al.: Elastomeric Origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Func. Mater. 22(7), 1376–1384 (2012)

    Article  Google Scholar 

  26. Schubert, B.E., Floreano, D.: Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS). RSC Adv. 3(46), 24671–24679 (2013)

    Article  Google Scholar 

  27. Van Meerbeek, I.M., Mac Murray, B.C., Kim, J.W., Robinson, S.S., Zou, P.X., Silberstein, M.N., Shepherd, R.F.: Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines. Adv. Mater. 28(14), 2801–2806 (2016)

    Article  Google Scholar 

  28. Alambeigi, F., Seifabadi, R., Armand, M.: A continuum manipulator with phase changing alloy. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, pp. 758–764. IEEE (2016)

    Google Scholar 

  29. Zhao, R., Yao, Y., Luo, Y.: Development of a variable stiffness over tube based on low-melting-point-alloy for endoscopic surgery. J. Med. Devices 10(2), 021002 (2016)

    Article  Google Scholar 

  30. Tonazzini, A., Mintchev, S., Schubert, B., Mazzolai, B., Shintake, J., Floreano, D.: Variable stiffness fiber with self-healing capability. Adv. Mater. 28(46), 10142–10148 (2016)

    Article  Google Scholar 

  31. https://www.smooth-on.com/products/dragon-skin-10-medium/. Accessed 21 Apr 2017

Download references

Acknowledgments

This work was supported by the National Science Foundation support projects, China under contract number 61633004, 61403012, and 61333016; the Open Research Fund of Key Laboratory Space Utilization, Chinese Academy of Sciences (No. 6050000201607004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hao, Y., Wang, T., Wen, L. (2017). A Programmable Mechanical Freedom and Variable Stiffness Soft Actuator with Low Melting Point Alloy. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics