Skip to main content

A Preliminary Study of Upper-Limb Motion Recognition with Noncontact Capacitive Sensing

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

Abstract

This study explores the noncontact capacitive sensing strategy on upper-limb motion recognition. The noncontact capacitive sensing system for upper limb comprises a sensing front-end, a sensing circuit and a graphic user interface. The sensing front-end is designed with the thermoplastic band which is surrounded on the forearm. Different from the capacitive sensing methods in previous works for lower limbs, the system in this study measure the muscle contractions without strong physical interaction to the environment. After development of the system, one healthy subjects participated in the experiment. Eight forearm motions, including six basic wrist joint motions and two gestures were investigated. With the selected feature set and the designed classification method, the capacitive sensing strategy produced over 99% recognition accuracy for the eight-motion recognition. The preliminary results demonstrate that the noncontact capacitive sensing approach is a promising solution to the upper-limb motion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, Hoboken (2008)

    Book  Google Scholar 

  2. Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., Aszmann, O.C.: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 797–809 (2014). doi:10.1109/TNSRE.2014.2305111

    Article  Google Scholar 

  3. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012). doi:10.3390/s120201211

    Article  Google Scholar 

  4. Huang, Y., Englehart, K.B., Hudgins, B., Chan, A.D.: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 52(11), 1801–1811 (2005). doi:10.1109/TBME.2005.856295

    Article  Google Scholar 

  5. Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008). doi:10.1109/TBME.2008.919734

    Article  Google Scholar 

  6. Scheme, E.J., Englehart, K.B., Hudgins, B.S.: Selective classification for improved robustness of myoelectric control under nonideal conditions. IEEE Trans. Biomed. Eng. 58(6), 1698–1705 (2011). doi:10.1109/TBME.2011.2113182

    Article  Google Scholar 

  7. Young, A.J., Hargrove, L.J., Kuiken, T.A.: Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration. IEEE Trans. Biomed. Eng. 59(3), 645–652 (2012). doi:10.1109/TBME.2011.2177662

    Article  Google Scholar 

  8. Tkach, D.C., Young, A.J., Smith, L.H., Rouse, E.J., Hargrove, L.J.: Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 727–734 (2014). doi:10.1109/TNSRE.2014.2302799

    Article  Google Scholar 

  9. Zhu, X., Liu, J., Zhang, D., Sheng, X., Jiang, N.: Cascaded adaptation framework for fast calibration of myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 25(3), 254–264 (2017). doi:10.1109/TNSRE.2016.2562180

    Article  Google Scholar 

  10. Artemiadis, P.K., Kyriakopoulos, K.J.: EMG-based teleoperation of a robot arm in planar catching movements using ARMAX model and trajectory monitoring techniques. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 3244–3249. IEEE Press, Orlando (2006). doi:10.1109/ROBOT.2006.1642196

  11. Artemiadis, P.K., Kyriakopoulos, K.J.: An EMG-based robot control scheme robust to time-varying EMG signal features. IEEE Trans. Inf. Technol. Biomed. 14(3), 582–588 (2010). doi:10.1109/TITB.2010.2040832

    Article  Google Scholar 

  12. Vogel, J., Castellini, C., Van Der Smagt, P.: EMG-based teleoperation and manipulation with the DLR LWR-III. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 672–678. IEEE Press, San Francisco, (2011). doi:10.1109/IROS.2011.6094739

  13. Antuvan, C.W., Ison, M., Artemiadis, P.: Embedded human control of robots using myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 820–827 (2014). doi:10.1109/TNSRE.2014.2302212

    Article  Google Scholar 

  14. Ikemoto, S., Kimoto, Y., Hosoda, K.: Surface EMG based posture control of shoulder complex linkage mechanism. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1546–1551. IEEE Press, Hamburg (2015). doi:10.1109/IROS.2015.7353573

  15. Lunardini, F., Casellato, C., d’Avella, A., Sanger, T.D., Pedrocchi, A.: Robustness and reliability of synergy-based myocontrol of a multiple degree of freedom robotic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 24(9), 940–950 (2016). doi:10.1109/TNSRE.2015.2483375

    Article  Google Scholar 

  16. Sensinger, J.W., Lock, B.A., Kuiken, T.A.: Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 17(3), 270–278 (2009). doi:10.1109/TNSRE.2009.2023282

    Article  Google Scholar 

  17. Young, A.J., Hargrove, L.J., Kuiken, T.A.: The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans. Biomed. Eng. 58(9), 2537–2544 (2011). doi:10.1109/TBME.2011.2159216

    Article  Google Scholar 

  18. Zheng, E., Chen, B., Wei, K., Wang, Q.: Lower limb wearable capacitive sensing and its applications to recognizing human gaits. Sensors 13(10), 13334–13355 (2013). doi:10.3390/s131013334

    Article  Google Scholar 

  19. Chen, B., Zheng, E., Fan, X., Liang, T., Wang, Q., Wei, K., Wang, L.: Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans. Neural Syst. Rehabil. Eng. 21(5), 744–755 (2013). doi:10.1109/TNSRE.2013.2262952

    Article  Google Scholar 

  20. Zheng, E., Wang, L., Wei, K., Wang, Q.: A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees. IEEE Trans. Biomed. Eng. 61(12), 2911–2920 (2014). doi:10.1109/TBME.2014.2334316

    Article  Google Scholar 

  21. Zheng, E., Wang, Q.: Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 161–170 (2017). doi:10.1109/TNSRE.2016.2529581

    Article  Google Scholar 

  22. Zheng, E., Manca, S., Yan, T., Parri, A., Vitiello, N., Wang, Q.: Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators. IEEE Trans. Biomed. Eng. (2017). doi:10.1109/TBME.2017.2672720

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 91648207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhao Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zheng, E., Wang, Q., Qiao, H. (2017). A Preliminary Study of Upper-Limb Motion Recognition with Noncontact Capacitive Sensing. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics